DOI QR코드

DOI QR Code

Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory

  • Soleimani, Ahmad (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Dastani, Kia (Department of Mechanical Engineering, Sharif University of Technology) ;
  • Hadi, Amin (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Naei, Mohamad Hasan (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2018.02.14
  • Accepted : 2019.03.08
  • Published : 2019.03.25

Abstract

In this paper, the effects of inevitable out-of-plane defects on the postbuckling behavior of single-layered graphene sheets (SLGSs) under in-plane loadings are investigated based on nonlocal first order shear deformation theory (FSDT) and von-Karman nonlinear model. A generic imperfection function, which takes the form of the products of hyperbolic and trigonometric functions, is employed to model out-of-plane defects as initial geometrical imperfections of SLGSs. Nonlinear equilibrium equations are derived from the principle of virtual work and variational formulation. The postbuckling equilibrium paths of imperfect graphene sheets (GSs) are presented by solving the governing equations via isogeometric analysis (IGA) and Newton-Raphson iterative method. Finally, the sensitivity of the postbuckling behavior of GS to shape, amplitude, extension on the surface, and location of initial imperfection is studied. Results showed that the small scale and initial imperfection effects on the postbuckling behavior of defective SLGS are important and cannot be ignored.

Keywords

References

  1. Adeli, M.M., Hadi, A., Hosseini, M. and Gorgani, H.H. (2017), "Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory", Eur. Phys. J. Plus, 132(9), 393. https://doi.org/10.1140/epjp/i2017-11688-0
  2. Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Physica E: Low-dimens. Syst. Nanostruct., 84, 84-97. https://doi.org/10.1016/j.physe.2016.05.036
  4. Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37(12), 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004
  5. Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028
  6. Ansari, R., Motevalli, B., Montazeri, A. and Ajori, S. (2011), "Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation", Solid State Commun., 151(17), 1141-1146. https://doi.org/10.1016/j.ssc.2011.05.021
  7. Ansari, R., Ajori, S. and Motevalli, B. (2012), "Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation", Superlatt. Microstruct., 51(2), 274-289. https://doi.org/10.1016/j.spmi.2011.11.019
  8. Ansari, R., Shahabodini, A. and Rouhi, H. (2013), "Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory", Compos. Struct., 95, 88-94. https://doi.org/10.1016/j.compstruct.2012.06.026
  9. Ansari, R., Gholami, R., Sahmani, S., Norouzzadeh, A. and Bazdid-Vahdati, M. (2015), "Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment", Acta Mechanica Solida Sinica, 28(6), 659-667. https://doi.org/10.1016/S0894-9166(16)30007-6
  10. Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Phys. B: Condensed Matter, 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025
  11. Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and de Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B: Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012
  12. Arda, M. and Aydogdu, M. (2018), "Longitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes", J. Computat. Appl. Mech., 49(2), 304-313.
  13. Ariza, M. and Ortiz, M. (2010), "Discrete dislocations in graphene", J. Mech. Phys. Solids, 58(5), 710-734. https://doi.org/10.1016/j.jmps.2010.02.008
  14. Bagdatli, S.M. (2015), "Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory", Compos. Part B: Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030
  15. Baimova, J., Bo, L., Dmitriev, S., Zhou, K. and Nazarov, A. (2013), "Effect of Stone-Thrower-Wales defect on structural stability of graphene at zero and finite temperatures", EPL (Europhysics Letters), 103(4), 46001. https://doi.org/10.1209/0295-5075/103/46001
  16. Banhart, F., Kotakoski, J. and Krasheninnikov, A.V. (2010), "Structural defects in graphene", ACS Nano, 5(1), 26-41. https://doi.org/10.1021/nn102598m
  17. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  18. Bodily, B. and Sun, C. (2003), "Structural and equivalent continuum properties of single-walled carbon nanotubes", Int. J. Mater. Product Technol., 18(4-6), 381-397. https://doi.org/10.1504/IJMPT.2003.002498
  19. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  20. Brodka, A., Koloczek, J. and Burian, A. (2007), "Application of molecular dynamics simulations for structural studies of carbon nanotubes", J. Nanosci. Nanotechnol., 7(4-5), 1505-1511. https://doi.org/10.1166/jnn.2007.333
  21. Chandra, Y., Chowdhury, R., Adhikari, S. and Scarpa, F. (2011), "Elastic instability of bilayer graphene using atomistic finite element", Physica E: Low-dimens. Syst. Nanostruct., 44(1), 12-16. https://doi.org/10.1016/j.physe.2011.06.020
  22. Cottrell, J.A., Hughes, T.J. and Bazilevs, Y. (2009), Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons.
  23. Craighead, H.G. (2000), "Nanoelectromechanical systems", Science, 290(5496), 1532-1535. https://doi.org/10.1126/science.290.5496.1532
  24. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
  25. Dastjerdi, S. and Jabbarzadeh, M. (2016), "Nonlinear bending analysis of bilayer orthotropic graphene sheets resting on Winkler-Pasternak elastic foundation based on non-local continuum mechanics", Compos. Part B: Eng., 87, 161-175. https://doi.org/10.1016/j.compositesb.2015.10.018
  26. Dastjerdi, S., Lotfi, M. and Jabbarzadeh, M. (2016), "The effect of vacant defect on bending analysis of graphene sheets based on the Mindlin nonlocal elasticity theory", Compos. Part B: Eng., 98, 78-87. https://doi.org/10.1016/j.compositesb.2016.05.009
  27. Ebrahimi, S. (2015), "Influence of Stone-Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain", Solid State Commun., 220, 17-20. https://doi.org/10.1016/j.ssc.2015.06.020
  28. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  29. Eringen, A.C. (2002), Nonlocal continuum field theories, Springer Science & Business Media.
  30. Fan, B., Yang, X. and Zhang, R. (2010), "Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study", Phys. Lett. A, 374(27), 2781-2784. https://doi.org/10.1016/j.physleta.2010.04.066
  31. Fantuzzi, N. and Tornabene, F. (2016), "Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates", Compos. Part B: Eng., 96, 173-203. https://doi.org/10.1016/j.compositesb.2016.04.034
  32. Farajpour, A., Shahidi, A., Mohammadi, M. and Mahzoon, M. (2012), "Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics", Compos. Struct., 94(5), 1605-1615. https://doi.org/10.1016/j.compstruct.2011.12.032
  33. Farajpour, A., Dehghany, M. and Shahidi, A. (2013a), "Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment", Compos. Part B: Eng., 50, 333-343. https://doi.org/10.1016/j.compositesb.2013.02.026
  34. Farajpour, A., Solghar, A.A. and Shahidi, A. (2013b), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Physica E: Low-dimens. Syst. Nanostruct., 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028
  35. Farajpour, M., Shahidi, A., Hadi, A. and Farajpour, A. (2018), "Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magnetoelectro-elastic nanofilms", Mech. Adv. Mater. Struct., 1-13.
  36. Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B: Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029
  37. Fleck, N. and Hutchinson, J. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 296-361.
  38. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018a), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004
  39. Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018b), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672.
  40. Hadi, A., Rastgoo, A., Haghighipour, N. and Bolhassani, A. (2018c), "Numerical modelling of a spheroid living cell membrane under hydrostatic pressure", J. Statist. Mech.: Theory Experim., 2018(8), 083501. https://doi.org/10.1088/1742-5468/aad369
  41. Hao, X., Qiang, H. and Xiaohu, Y. (2008), "Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation", Compos. Sci. Technol., 68(7), 1809-1814. https://doi.org/10.1016/j.compscitech.2008.01.013
  42. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. and Iijima, S. (2004), "Direct evidence for atomic defects in graphene layers", Nature, 430(7002), 870-873. https://doi.org/10.1038/nature02817
  43. Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Computat. Appl. Mech., 49(1), 197-211.
  44. Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  45. Ito, A. and Okamoto, S. (2012), "Mechanical properties of vacancy-containing graphene and graphite using molecular dynamics simulations", Proceedings of the International Multi Conference of Engineers and Computer Scientists.
  46. Jalali, S., Pugno, N. and Jomehzadeh, E. (2016), "Influence of outof-plane defects on vibration analysis of graphene sheets: Molecular and continuum approaches", Superlatt. Microstruct., 91, 331-344. https://doi.org/10.1016/j.spmi.2016.01.023
  47. Jamalpoor, A. and Hosseini, M. (2015), "Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory", Compos. Part B: Eng., 75, 53-64. https://doi.org/10.1016/j.compositesb.2015.01.026
  48. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78.
  49. Jing, N., Xue, Q., Ling, C., Shan, M., Zhang, T., Zhou, X. and Jiao, Z. (2012), "Effect of defects on Young's modulus of graphene sheets: A molecular dynamics simulation", Rsc Adv., 2(24), 9124-9129. https://doi.org/10.1039/c2ra21228e
  50. Jung, W.-Y., Han, S.-C. and Park, W.-T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos. Part B: Eng., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058
  51. Karlicic, D., Adhikari, S., Murmu, T. and Cajic, M. (2014), "Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system", Compos. Part B: Eng., 66, 328-339. https://doi.org/10.1016/j.compositesb.2014.05.029
  52. Kotakoski, J., Eder, F.R. and Meyer, J.C. (2014), "Atomic structure and energetics of large vacancies in graphene", Phys. Rev. B, 89(20), 201406. https://doi.org/10.1103/PhysRevB.89.201406
  53. Le-Manh, T. and Lee, J. (2014), "Postbuckling of laminated composite plates using NURBS-based isogeometric analysis", Compos. Struct., 109, 286-293. https://doi.org/10.1016/j.compstruct.2013.11.011
  54. Lehmann, T., Ryndyk, D.A. and Cuniberti, G. (2013), "Combined effect of strain and defects on the conductance of graphene nanoribbons", Phys. Rev. B, 88(12), 125420. https://doi.org/10.1103/PhysRevB.88.125420
  55. Lherbier, A., Dubois, S.M.-M., Declerck, X., Roche, S., Niquet, Y.-M. and Charlier, J.-C. (2011), "Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition", Phys. Rev. Lett., 106(4), 046803. https://doi.org/10.1103/PhysRevLett.106.046803
  56. Li, C. and Chou, T.-W. (2003a), "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", Phys. Rev. B, 68(7), 073405. https://doi.org/10.1103/PhysRevB.68.073405
  57. Li, C. and Chou, T.-W. (2003b), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  58. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  59. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Computat. Mater. Sci., 112, Part A, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
  60. Li, L., Hu, Y. and Li, X. (2016a), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
  61. Li, L., Li, X. and Hu, Y. (2016b), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  62. Lusk, M.T., Wu, D.T. and Carr, L.D. (2010), "Graphene nanoengineering and the inverse Stone-Thrower-Wales defect", Phys. Rev. B, 81(15), 155444. https://doi.org/10.1103/PhysRevB.81.155444
  63. Ma, J., Alfe, D., Michaelides, A. and Wang, E. (2009), "Stone-Wales defects in graphene and other planar s p 2-bonded materials", Phys. Rev. B, 80(3), 033407.
  64. Mahdavi, M., Jiang, L. and Sun, X. (2012), "Nonlinear vibration and postbuckling analysis of a single layer graphene sheet embedded in a polymer matrix", Physica E: Low-dimens. Syst. Nanostruct., 44(7), 1708-1715. https://doi.org/10.1016/j.physe.2012.04.026
  65. Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos. Part B: Eng., 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060
  66. Montazeri, A., Ebrahimi, S. and Rafii-Tabar, H. (2015), "A molecular dynamics investigation of buckling behaviour of hydrogenated graphene", Molecul. Simul., 41(14), 1212-1218. https://doi.org/10.1080/08927022.2014.968849
  67. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004
  68. Neek-Amal, M. and Peeters, F. (2010a), "Defected graphene nanoribbons under axial compression", Appl. Phys. Lett., 97(15), 153118. https://doi.org/10.1063/1.3496467
  69. Neek-Amal, M. and Peeters, F. (2010b), "Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene", Phys. Rev. B, 81(23), 235437. https://doi.org/10.1103/PhysRevB.81.235437
  70. Neek-Amal, M. and Peeters, F. (2012), "Effect of grain boundary on the buckling of graphene nanoribbons", Appl. Phys. Lett., 100(10), 101905. https://doi.org/10.1063/1.3692573
  71. Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  72. Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
  73. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", International J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
  74. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169.
  75. Nguyen-Xuan, H., Thai, C.H. and Nguyen-Thoi, T. (2013), "Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory", Compos. Part B: Eng., 55, 558-574. https://doi.org/10.1016/j.compositesb.2013.06.044
  76. Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Kulasegaram, S. and Bordas, S.P.A. (2014), "Isogeometric analysis of functionally graded plates using a refined plate theory", Compos. Part B: Eng., 64, 222-234. https://doi.org/10.1016/j.compositesb.2014.04.001
  77. Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E: Low-dimens. Syst. Nanostruct., 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006
  78. Norouzzadeh, A. and Ansari, R. (2018a), "Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects", Thin-Wall. Struct., 127, 354-372. https://doi.org/10.1016/j.tws.2017.11.040
  79. Norouzzadeh, A. and Ansari, R. (2018b), "Nonlinear dynamic behavior of small-scale shell-type structures considering surface stress effects: An isogeometric analysis", Int. J. Non-Linear Mech., 101, 174-186. https://doi.org/10.1016/j.ijnonlinmec.2018.01.008
  80. Norouzzadeh, A., Ansari, R. and Rouhi, H. (2017), "Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: An isogeometric approach", Appl. Phys. A, 123(5), 330. https://doi.org/10.1007/s00339-017-0887-4
  81. Partovi-Azar, P., Jand, S.P., Namiranian, A. and Rafii-Tabar, H. (2013), "Electronic features induced by Stone-Wales defects in zigzag and chiral carbon nanotubes", Computat. Mater. Sci., 79, 82-86. https://doi.org/10.1016/j.commatsci.2013.05.050
  82. Piegl, L. and Tiller, W. (2012), The NURBS book, Springer Science & Business Media.
  83. Pradhan, S. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021
  84. Radic, N. and Jeremic, D. (2016), "Thermal buckling of doublelayered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory", Compos. Part B: Eng., 97, 201-215. https://doi.org/10.1016/j.compositesb.2016.04.075
  85. Rahmani, O., Refaeinejad, V. and Hosseini, S. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
  86. Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics, OUP Oxford.
  87. Rodrigues, J.N., Goncalves, P., Rodrigues, N., Ribeiro, R., dos Santos, J.L. and Peres, N. (2011), "Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects", Phys. Rev. B, 84(15), 155435. https://doi.org/10.1103/PhysRevB.84.155435
  88. Rouhi, S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Physica E: Low-dimens. Syst. Nanostruct., 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020
  89. Soleimani, A., Naei, M.H. and Mashhadi, M.M. (2016), "Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications", Microsyst. Technol., 1-13.
  90. Sun, Y., Ma, F., Ma, D., Xu, K. and Chu, P.K. (2012), "Stressinduced annihilation of Stone-Wales defects in graphene nanoribbons", J. Phys. D: Appl. Phys., 45(30), 305303. https://doi.org/10.1088/0022-3727/45/30/305303
  91. Tang, C., Meng, L., Sun, L., Zhang, K. and Zhong, J. (2008), "Molecular dynamics study of ripples in graphene nanoribbons on 6H-SiC (0001): Temperature and size effects", J. Appl. Phys., 104(11), 113536. https://doi.org/10.1063/1.3032895
  92. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  93. Tran, L.V., Ferreira, A.J.M. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of functionally graded plates using higher-order shear deformation theory", Compos. Part B: Eng., 51, 368-383. https://doi.org/10.1016/j.compositesb.2013.02.045
  94. Uzun, B., Numanoglu, H. and Civalek, O. (2018), "Free Vibration Analysis of BNNT with Different Cross-Sections via Nonlocal FEM", J. Computat. Appl. Mech., 49(2), 252-260.
  95. Wang, S.-P., Guo, J.-G. and Zhou, L.-J. (2013), "Influence of Stone-Wales defects on elastic properties of graphene nanofilms", Physica E: Low-dimens. Syst. Nanostruct., 48, 29-35. https://doi.org/10.1016/j.physe.2012.11.002
  96. Whitener, K.E. and Sheehan, P.E. (2014), "Graphene synthesis", Diamond and related materials, 46, 25-34. https://doi.org/10.1016/j.diamond.2014.04.006
  97. Xiao, J., Staniszewski, J. and Gillespie, J. (2009), "Fracture and progressive failure of defective graphene sheets and carbon nanotubes", Compos. Struct., 88(4), 602-609. https://doi.org/10.1016/j.compstruct.2008.06.008
  98. Xiao, J., Staniszewski, J. and Gillespie, J. (2010), "Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects", Mater. Sci. Eng.: A, 527(3), 715-723. https://doi.org/10.1016/j.msea.2009.10.052
  99. Yang, J., Liew, K. and Kitipornchai, S. (2006), "Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates", Int. J. Solids Struct., 43(17), 5247-5266. https://doi.org/10.1016/j.ijsolstr.2005.06.061
  100. Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Tanaka, S. (2016), "Inplane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B: Eng., 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008
  101. Zargaripoor, A., Bahrami, A. and Bahrami, M.N. (2018a), "Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach", J. Computat. Appl. Mech., 49(1), 102-124.
  102. Zargaripoor, A., Daneshmehr, A., Hosseini, I.I. and Rajabpoor, A. (2018b), "Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method", J. Computat. Appl. Mech., 49(1), 86-101.

Cited by

  1. Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
  2. Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
  3. Static Torsion of Bi-Directional Functionally Graded Microtube Based on the Couple Stress Theory Under Magnetic Field vol.12, pp.2, 2019, https://doi.org/10.1142/s1758825120500210
  4. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
  5. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.141
  6. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.533