참고문헌
- Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells: A literature review from 2003 to 2013", Int. J. Non-Linear Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., Int. J., 26(6), 673-691.
- Allaoui, A., Bai, S., Cheng, H.-M. and Bai, J. (2002), "Mechanical and electrical properties of a MWNT/epoxy composite", Compos. Sci. Technol., 62(15), 1993-1998. https://doi.org/10.1016/S0266-3538(02)00129-X
- Allman, D. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis", Comput. Struct., 19(1-2), 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
- Amabili, M. (2017), "Nonlinear damping in large-amplitude vibrations: modelling and experiments", Nonlinear Dyn., 1-14.
- Ansari, R. and Hemmatnezhad, M. (2012), "Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes", Nonlinear Dyn., 67(1), 373-383. https://doi.org/10.1007/s11071-011-9985-6
- Bergan, P. and Felippa, C.A. (1985), "A triangular membrane element with rotational degrees of freedom", Comput. Methods Appl. Mech. Eng., 50(1), 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
- Bhashyam, G. and Prathap, G. (1980), "Galerkin finite element method for non-linear beam vibrations", J. Sound Vib., 72(2), 191-203. https://doi.org/10.1016/0022-460X(80)90652-5
- Billings, S.A. (2013), Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains, John Wiley & Sons.
- Brebbia, C.A. and Walker, S. (2016), Boundary Element Techniques in Engineering, Elsevier.
- Calio, I. and Greco, A. (2014), "Free vibrations of spatial Timoshenko arches", J. Sound Vibr., 333(19), 4543-4561. https://doi.org/10.1016/j.jsv.2014.04.019
- Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548.
- Chen, S., Cheung, Y. and Xing, H. (2001), "Nonlinear vibration of plane structures by finite element and incremental harmonic balance method", Nonlinear Dyn., 26(1), 87-104. https://doi.org/10.1023/A:1012982009727
- Ding, H., Zhu, M.-H. and Chen, L.-Q. (2018), "Nonlinear vibration isolation of a viscoelastic beam", Nonlinear Dyn., 92(2), 325-349. https://doi.org/10.1007/s11071-018-4058-8
- Dumir, P. and Bhaskar, A. (1988), "Some erroneous finite element formulations of non-linear vibrations of beams and plates", J. Sound Vib., 123(3), 517-527. https://doi.org/10.1016/S0022-460X(88)80167-6
- Erik, T.T. and Chou, T.W. (2002), "Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization", J. Phys. D: Appl. Phys., 35(16), L77. https://doi.org/10.1088/0022-3727/35/16/103
- Fajman, P. (2002), "New triangular plane element with drilling degrees of freedom", J. Eng. Mech., 128(4), 413-418. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(413)
- Felippa, C.A. (2003), "A study of optimal membrane triangles with drilling freedoms", Comput. Methods Appl. Mech. Eng., 192(16-18), 2125-2168. https://doi.org/10.1016/S0045-7825(03)00253-6
- Feng, Y. and Bert, C.W. (1992), "Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam", Nonlinear Dyn., 3(1), 13-18. https://doi.org/10.1007/BF00045468
- Gupta, K. (1978), "Development of a finite dynamic element for free vibration analysis of two-dimensional structures", Int. J. Numer. Methods Eng., 12(8), 1311-1327. https://doi.org/10.1002/nme.1620120808
- Gupta, K.K. (1979), "Finite dynamic element formulation for a plane triangular element", Int. J. Numer. Methods Eng., 14(10), 1431-1448. https://doi.org/10.1002/nme.1620141002
- Heydari, M.M., Hafizi Bidgoli, A., Golshani, H.R., Beygipoor, G. and Davoodi, A. (2015), "Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM", Nonlinear Dyn., 79(2), 1425-1441. https://doi.org/10.1007/s11071-014-1751-0
- Hirwani, C.K. and Panda, S.K. (2018), "Numerical nonlinear frequency analysis of pre-damaged curved layered composite structure using higher-order finite element method", Int. J. Non-Linear Mech., 102, 14-24. https://doi.org/10.1016/j.ijnonlinmec.2018.03.005
- Hirwani, C., Mahapatra, T., Panda, S., Sahoo, S., Singh, V. and Patle, B. (2017), "Nonlinear free vibration analysis of laminated carbon/epoxy curved panels", Defence Sci. J., 67(2), 207. https://doi.org/10.14429/dsj.67.10072
- Iu, V., Cheung, Y. and Lau, S. (1985), "Non-linear vibration analysis of multilayer beams by incremental finite elements, Part I: Theory and numerical formulation", J. Sound Vib, 100(3), 359-372. https://doi.org/10.1016/0022-460X(85)90292-5
- Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287.
- Kumar, P. and Srinivas, J. (2017a), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidiscipl. Model. Mater. Struct., 13(4), 590-611. https://doi.org/10.1108/MMMS-05-2017-0032
- Kumar, P. and Srinivas, J. (2017b), "Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layerwise formulation", Compos. Struct., 177, 158-170. https://doi.org/10.1016/j.compstruct.2017.06.055
- Leung, A. and Fung, T. (1989), "Non-linear steady state vibration of frames by finite element method", Int. J. Numer. Methods Eng., 28(7), 1599-1618. https://doi.org/10.1002/nme.1620280710
- Leung, A., Zhu, B., Zheng, J. and Yang, H. (2004), "Analytic trapezoidal Fourier p-element for vibrating plane problems", J. Sound Vib., 271(1-2), 67-81. https://doi.org/10.1016/S0022-460X(03)00263-3
- Lewandowski, R. (1994), "Non-linear free vibrations of beams by the finite element and continuation methods", J. Sound Vib., 170(5), 577-593. https://doi.org/10.1006/jsvi.1994.1088
- Liew, K., Rajendran, S. and Wang, J. (2006), "A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields", Comput. Methods Appl. Mech. Eng., 195(9-12), 1207-1223. https://doi.org/10.1016/j.cma.2005.04.012
- Liew, K., Lei, Z. and Zhang, L. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Lin, F. and Xiang, Y. (2014a), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stabil. Dyn., 14(1), 1350056. https://doi.org/10.1142/S0219455413500569
- Lin, F. and Xiang, Y. (2014b), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
- Liu, G.-R. and Gu, Y. (2001a), "A point interpolation method for two-dimensional solids", Int. J. Numer. Methods Eng., 50(4), 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
- Liu, G. and Gu, Y. (2001b), "A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids", Journal of Sound and Vibration, 246(1), 29-46. https://doi.org/10.1006/jsvi.2000.3626
- Liu, G., Nguyen-Thoi, T. and Lam, K. (2009), "An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids", J. Sound Vib., 320(4-5), 1100-1130. https://doi.org/10.1016/j.jsv.2008.08.027
- Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conference Series: Materials Science and Engineering, IOP Publishing.
- Marur, S. and Prathap, G. (2005), "Non-linear beam vibration problems and simplifications in finite element models", Computat. Mech., 35(5), 352-360. https://doi.org/10.1007/s00466-004-0622-9
- Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear thermomechanical analysis of shell-like structures", J. Thermal Stress., 41(1), 37-53. https://doi.org/10.1080/01495739.2017.1360166
- Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 229(1), 13-28. https://doi.org/10.1177/1464420713493720
- Mehar, K. and Panda, S.K. (2016a), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conference Series: Materials Science and Engineering, IOP Publishing.
- Mehar, K. and Panda, S.K. (2016b), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
- Mehar, K. and Panda, S.K. (2016c), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706
- Mehar, K. and Panda, S.K. (2017), "Thermoelastic analysis of FGCNT reinforced shear deformable composite plate under various loadings", Int. J. Computat. Methods, 14(2), 1750019. https://doi.org/10.1142/S0219876217500190
- Mehar, K. and Panda, S.K. (2018a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821
- Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266
- Mehar, K. and Panda, S.K. (2018c), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Ing. J., 67(6), 565-578.
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Nonlinear Frequency Responses of Functionally Graded Carbon Nanotube-Reinforced Sandwich Curved Panel Under Uniform Temperature Field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409
- Mei, C. (1972), "Nonlinear vibration of beams by matrix displacement method", AIAA Journal, 10(3), 355-357. https://doi.org/10.2514/3.6595
- Mei, C. (1973), "Finite element displacement method for large amplitude free flexural vibrations of beams and plates", Comput. Struct., 3(1), 163-174. https://doi.org/10.1016/0045-7949(73)90081-3
- Mei, C. (1986), "Discussion of finite element formulations of nonlinear beam vibrations", Comput. Struct., 22(1), 83-85. https://doi.org/10.1016/0045-7949(86)90087-8
- Mir, M., Tahani, M. and Hassani, B. (2017), "Analytical prediction of Young's modulus of carbon nanotubes using a variational method", Appl. Math. Model., 45, 1031-1043. https://doi.org/10.1016/j.apm.2017.01.038
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014
- Qaisi, M. (1997), "A power series solution for the non-linear vibration of beams", J. Sound Vib., 199(4), 587-594. https://doi.org/10.1006/jsvi.1996.0696
- Rajendran, S. and Zhang, B. (2007), "A "FE-meshfree" QUAD4 element based on partition of unity", Comput. Methods Appl. Mech. Eng., 197(1-4), 128-147. https://doi.org/10.1016/j.cma.2007.07.010
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Rao, G.V. and Raju, K.K. (2003), "Large amplitude free vibrations of beams-an energy approach", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 83(7), 493-498. https://doi.org/10.1002/zamm.200310024
- Rehfield, L.W. (1973), "Nonlinear free vibrations of elastic structures", Int. J. Solids Struct., 9(5), 581-590. https://doi.org/10.1016/0020-7683(73)90071-1
- Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
- Rezaiee-Pajand, M. and Rajabzadeh-Safaei, N. (2016a), "An explicit stiffness matrix for parabolic beam element", Latin Am. J. Solids Struct., 13, 1782-1801. https://doi.org/10.1590/1679-78252820
- Rezaiee Pajand, M. and Rajabzadeh Safaei, N. (2016b), "Static and dynamic analysis of circular beams using explicit stiffness matrix", Struct. Eng. Mech., Ing. J., 60(1), 111-130. https://doi.org/10.12989/sem.2016.60.1.111
- Rezaiee-Pajand, M. and Yaghoobi, M. (2014), "An efficient formulation for linear and geometric non-linear membrane elements", Latin Am. J. Solids Struct., 11(6), 1012-1035. https://doi.org/10.1590/S1679-78252014000600007
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018a), "A triangular shell element for geometrically nonlinear analysis", Acta Mechanica, 229(1), 323-342. https://doi.org/10.1007/s00707-017-1971-8
- Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018b), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6
- Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Hozhabrossadati, S.M. (2018d), "Three-dimensional deformations of a curved circular beam subjected to thermo-mechanical loading using green's function method", Int. J. Mech. Sci., 142-143, 163-175. https://doi.org/10.1016/j.ijmecsci.2018.04.045
- Rezaiee Pajand, M., Masoodi, A. and Arabi, E. (2018e), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401.
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol. [In Press]
- Sadri, M., Younesian, D. and Esmailzadeh, E. (2016), "Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass", Nonlinear Dyn., 84(3), 1667-1682. https://doi.org/10.1007/s11071-016-2596-5
- Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999
- Sarma, B. and Varadan, T. (1982), "Certain discussions in the finite element formulation of nonlinear vibration analysis", Comput. Struct., 15(6), 643-646. https://doi.org/10.1016/S0045-7949(82)80004-7
- Sarma, B., Varadan, T. and Prathap, G. (1988), "On various formulations of large amplitude free vibrations of beams", Comput. Struct., 29(6), 959-966. https://doi.org/10.1016/0045-7949(88)90321-5
- Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., Int. J., 24, 65-77. https://doi.org/10.12989/scs.2017.24.1.065
- Shang, H.Y., Machado, R.D., Abdalla Filho, J.E. and Arndt, M. (2017), "Numerical analysis of plane stress free vibration in severely distorted mesh by Generalized Finite Element Method", Eur. J. Mech.-A/Solids, 62, 50-66. https://doi.org/10.1016/j.euromechsol.2016.11.006
- Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.-S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90(2), 899-914. https://doi.org/10.1007/s11071-017-3701-0
- Singh, G., Rao, G.V. and Iyengar, N. (1990a), "Re-investigation of large-amplitude free vibrations of beams using finite elements", J. Sound Vib., 143(2), 351-355. https://doi.org/10.1016/0022-460X(90)90958-3
- Singh, G., Sharma, A. and Rao, G.V. (1990b), "Large-amplitude free vibrations of beams-a discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L
- Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct., Int. J., 25(3), 347-360.
- Tahouneh, V. (2018), "3-D Vibration analysis of FGMWCNTs/Phenolic sandwich sectorial plates", Steel Compos. Struct., Int. J., 26(5), 649-662.
- Tian, R. and Yagawa, G. (2007), "Allman's triangle, rotational DOF and partition of unity", Int. J. Numer. Methods Eng., 69(4), 837-858. https://doi.org/10.1002/nme.1790
- Tu, Z.-c. and Ou-Yang, Z.-c. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Review B, 65(23), 233407. https://doi.org/10.1103/PhysRevB.65.239901
- Valentini, L., Biagiotti, J., Kenny, J.M. and Lopez Manchado, M.A. (2003), "Physical and mechanical behavior of singlewalled carbon nanotube/polypropylene/ethylene-propylenediene rubber nanocomposites", J. Appl. Polym. Sci., 89(10), 2657-2663. https://doi.org/10.1002/app.12319
- Vodenitcharova, T. and Zhang, L. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a singlewalled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
- Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Weaver, Jr. W., Timoshenko, S.P. and Young, D.H. (1990). Vibration Problems in Engineering, John Wiley & Sons.
- Wielentejczyk, P. and Lewandowski, R. (2017), "Geometrically nonlinear, steady state vibration of viscoelastic beams", Int. J. Non-Linear Mech., 89, 177-186. https://doi.org/10.1016/j.ijnonlinmec.2016.12.012
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2008), "Free in-plane vibration of general curved beams using finite element method", J. Sound Vib., 318(4-5), 850-867. https://doi.org/10.1016/j.jsv.2008.04.041
- Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessels Piping, 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Yazdani Sarvestani, H. and Ghayoor, H. (2016), "Free vibration analysis of curved nanotube structures", Int. J. Non-Linear Mech., 86, 167-173. https://doi.org/10.1016/j.ijnonlinmec.2016.09.001
- Yu, Z., Guo, X. and Chu, F. (2010), "A multivariable hierarchical finite element for static and vibration analysis of beams", Finite Elem. Anal. Des., 46(8),625-631. https://doi.org/10.1016/j.finel.2010.03.002
- Zhang, L. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116
- Zhang, B. and Rajendran, S. (2008), "'FE-Meshfree'QUAD4 element for free-vibration analysis", Comput. Methods Appl. Mech. Eng., 197(45-48), 3595-3604. https://doi.org/10.1016/j.cma.2008.02.012
- Zhang, L., Song, Z. and Liew, K. (2015), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138
- Zhong, H. and Guo, Q. (2003), "Nonlinear vibration analysis of Timoshenko beams using the Differential Quadrature Method", Nonlinear Dyn., 32(3), 223-234. https://doi.org/10.1023/A:1024463711325
- Zhou, X., Huang, K. and Li, Z. (2018), "Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method", Int. J. Non-Linear Mech., 104, 87-99. https://doi.org/10.1016/j.ijnonlinmec.2018.05.007
피인용 문헌
- An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams vol.28, 2019, https://doi.org/10.1016/j.istruc.2020.08.038
- Damping Energy Dissipation and Parameter Identification of the Bellows Structure Covered with Elastic-Porous Metal Rubber vol.2021, 2019, https://doi.org/10.1155/2021/8813099
- Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic excitations vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.203
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601