DOI QR코드

DOI QR Code

Numerical optimization of a vertical axis wind turbine: case study at TMU campus

  • Received : 2018.02.04
  • Accepted : 2018.12.28
  • Published : 2019.03.25

Abstract

In this paper, the aerodynamic analysis of a vertical axis wind turbine was carried out by CFD approach to optimize the turbine performance. To perform numerical simulation, SST-Transition turbulence model was used, which demonstrated more precise results compared to non-transition models. A parametric study was conducted to optimize the VAWT performance based on the selected model. The investigation of pitch angle changes showed that the highest power produced by the turbine occurs at $2^{\circ}$ angle. Considering the effect of the rotor's arm junction to the airfoil showed that by increasing the distance of the junction from the edge of the airfoil from 25 cm to 40 cm, the power of the turbine increases by 60%. However, further increase in this distance results in power decrease. Based on the proposed numerical model, a case study was conducted to consider the installation of four VAWTs in the southwest corner of the medical science building at TMU campus with a height of 42m. The results of the simulation showed that 8.27 MWh energy is obtainable annually.

Keywords

References

  1. Aresti, L., Tutar, M., Chen, Y. and Calay, R.K. (2013), "Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models", Wind Struct., 17(6),647-670 https://doi.org/10.12989/was.2013.17.6.647
  2. Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, D. and Ferrari, L. (2016), "Critical issues in the CFD simulation of Darrieus wind turbines", Renew. Energ., 85, 419-435 https://doi.org/10.1016/j.renene.2015.06.048
  3. Biadgo, M.A., Simonovic, A., Komarov, D. and Stupar, S. (2013), "Numerical and analytical investigation of vertical axis wind turbine", FME Transactions, 41(1), 49-58
  4. Burton, T., Sharpe, D., Jenkins, n. and Bossanyi, E. (2012), Wind Energy Handbook, John Wiley & Sons.
  5. Chowdhury, A.M., Akimoto, H. and Hara, Y. (2016), "Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration", Renew. Energ., 85, 327-337 https://doi.org/10.1016/j.renene.2015.06.037
  6. Cooney, C., Byrne, R., Lyons, W. and O'Rourke, F. (2017), "Performance characterisation of a commercial-scale wind turbine operating in an urban environment, using real data", Energy for Sustainable Development, 36, 44-54 https://doi.org/10.1016/j.esd.2016.11.001
  7. Daroczy, L., Janiga, G., Petrasch, K., Webner, M. and Thevenin., D. (2015), "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors", Energy, 90(1), 680-690 https://doi.org/10.1016/j.energy.2015.07.102
  8. Delafin, P.L., Nishino, T.., Wang, L. and Kolios, A. (2016), "Effect of the number of blades and solidity on the performance of a vertical axis wind turbine", J. Phys.: Conference Series, 753(2), 022033 https://doi.org/10.1088/1742-6596/753/2/022033
  9. Dobrev, I. and Massouh, F. (2011), "CFD and PIV investigation of unsteady flow through Savonius wind turbine", Energy Procedia, 6, 711-720 https://doi.org/10.1016/j.egypro.2011.05.081
  10. Durbin, P.A. and Reif, B A.P. (2011), Statistical Theory and Modeling for Turbulent Flows, John Wiley & Sons.
  11. Ferrari, G., Federici, D., Schito, P., Inzoli, F. and Mereu, R. (2017), "CFD study of Savonius wind turbine: 3D model validation and parametric analysis", Renew. Energ., 105, 722-734 https://doi.org/10.1016/j.renene.2016.12.077
  12. Fluent, ANSYS (2013),ANSYS fluent theory guide 15.0.
  13. Fluent, ANSYS (2014),ANSYS fluent theory guide 16.0.
  14. Hameed, M.S. and Afaq, S.K. (2013), "Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques", Ocean Eng., 57, 248-255 https://doi.org/10.1016/j.oceaneng.2012.09.007
  15. Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis wind turbine", Renew. Energ., 35(2),412-422 https://doi.org/10.1016/j.renene.2009.07.025
  16. IRIMO (2008), National Centre of Climatology Report. Islamic Republic of Iran Meteorological Organization.
  17. Islam, Mazharul, David S. K. Ting, and Amir Fartaj. (2008) "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines", Renew. Sust. Energ. Rev., 12(4),1087-1109 https://doi.org/10.1016/j.rser.2006.10.023
  18. Jadidi, A.M. and Heidarinejad, G. (2015), "Turbulent wind flow simulation over Tarbiat Modares University", Mod. Mech. Eng., 14(13), 272-280.
  19. Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M. and Abbaszadeh, R. (2010), "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran", Energy, 35(1), 188-201 https://doi.org/10.1016/j.energy.2009.09.009
  20. Langtry, R.B. (2006), "A correlation-based transition model using local variables for unstructured parallelized CFD codes", Ph.D. Dissertation, Mechanical Engineering, University of Stuttgart, Stuttgart, Germany
  21. Lanzafame, R., Mauro, S. and Messina, M. (2014), "2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model", Energy Procedia, 45, 131-140 https://doi.org/10.1016/j.egypro.2014.01.015
  22. Lee, Y.T. and Lim, H.C. (2015), "Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine", Renew. Energ., 83,407-415 https://doi.org/10.1016/j.renene.2015.04.043
  23. Lin, S.Y., Lin, Y.Y., Bai, C.J. and Wang, W.C. (2016), "Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics", Renew. Energ., 99, 654-662 https://doi.org/10.1016/j.renene.2016.07.050
  24. Marini, M., Massardo, A. and Satta, A. (1992), "Performance of vertical axis wind turbines with different shapes", J. Wind Eng. Ind. Aerod., 39(1-3), 83-93 https://doi.org/10.1016/0167-6105(92)90535-I
  25. Marsh, P., Ranmuthugala, D., Penesis, I. and Thomas, G. (2017), "The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines", Renew. Energ., 105, 106-116 https://doi.org/10.1016/j.renene.2016.11.063
  26. Mathew, S. (2006), Wind energy fundamentals,resource analysis and economics, second ed. Vol. 1. Berlin, Springer Science & Business Media
  27. McTavish, S., Feszty, D. and Sankar, T. (2012), "Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation", Renew. Energ., 41, 171-179 https://doi.org/10.1016/j.renene.2011.10.018
  28. Mendoza, V., Bachant, P., Ferreira, C. and Goude, A. (2018), "Nearwake flow simulation of a vertical axis turbine using an actuator line model",Wind Energy
  29. Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605 https://doi.org/10.2514/3.12149
  30. Menter, F.R., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbul. Heat Mass Transfer, 4(1), 625-632
  31. Menter, F.R., Langtry, R. and Volker, S. (2006), "Transition modelling for general purpose CFD codes", Flow Turbul. Combust., 77(1), 277-303 https://doi.org/10.1007/s10494-006-9047-1
  32. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G. and Volker, S. (2006), "A correlation-based transition model using local variables-Part I: model formulation", J. Turbomachinery, 128(3), 413-422 https://doi.org/10.1115/1.2184352
  33. Mohamed, M.H. (2012), "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes", Energy, 47(1), 522-530 https://doi.org/10.1016/j.energy.2012.08.044
  34. Nobile, R., Vahdati, M., Barlow, J.F. and Mewburn-Crook, A. (2014), "Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study", J. Wind Eng. Ind. Aerod., 125, 168-179 https://doi.org/10.1016/j.jweia.2013.12.005
  35. Rezaeiha, A., Kalkman, I. and Blocken, B. (2017), "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine", Appl. Energ., 197, 132-150 https://doi.org/10.1016/j.apenergy.2017.03.128
  36. Righter, R.W. (1996), Wind Energy in America: A history, University of Oklahoma Press.
  37. Rolland, S., Newton, W., Williams, A.J., Croft, T.N., Gethin, D.T. and Cross, M. (2013), "Simulations technique for the design of a vertical axis wind turbine device with experimental validation", Appl. Energ., 111,1195-1203 https://doi.org/10.1016/j.apenergy.2013.04.026
  38. Shamsi, R. (2010), Tehran Yearly Wind Statistic. Tehran.
  39. Soto, A.M. and Jentsch, M.F. (2016), "Comparison of prediction models for determining energy demand in the residential sector of a country", Energ. Build., 128,38-55 https://doi.org/10.1016/j.enbuild.2016.06.063
  40. Zamani, M., Maghrebi, M.J. and Moshizi, S.A. (2016), "Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine", Wind Struct., 22(5), 595-616 https://doi.org/10.12989/was.2016.22.5.595