참고문헌
- ACI Committee 318 (2014), Building Code Requirements for Structural Concrete:(ACI 318-14), and Commentary (ACI 318R-14), American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- ASCE/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, U.S.A.
- ASCE/SEI 41-17 (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia, U.S.A.
- Ashour, A.F. and Morley, C.T. (1993), "Three-dimensional nonlinear finite element modelling of reinforced concrete structures", Fin. Elem. Analy. Des., 15(1), 43-55. https://doi.org/10.1016/0168-874X(93)90069-3
- Bazargani, P. and Adebar, P. (2015), "Interstory drifts from shear strains at base of high-rise concrete shear walls", J. Struct. Eng., 141(12), 04015067. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001306
- Belletti, B., Damoni, C. and Gasperi, A. (2013), "Modeling approaches suitable for pushover analyses of RC structural wall buildings", Eng. Struct., 57, 327-338. https://doi.org/10.1016/j.engstruct.2013.09.023
- Belytschko, T., Bazant, Z.P., Yul-Woong, H. and Ta-Peng, C. (1986), "Strain-softening materials and finite-element solutions", Comput. Struct., 23(2), 163-180. https://doi.org/10.1016/0045-7949(86)90210-5
- Bohl, A. and Adebar, P. (2011), "Plastic hinge lengths in high-rise concrete shear walls", ACI Struct. J., 108(2), 148-157.
- Brueggen, B.L., French, C.E. and Sritharan, S. (2017), "T-shaped RC structural walls subjected to multidirectional loading: Test results and design recommendations", J. Struct. Eng., 143(7), 04017040. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001719
- Christidis, K., Vougioukas, E. and Trezos, K.G. (2013), "Seismic assessment of existing RC shear walls non-compliant with current code provisions", Mag. Concrete Res., 65(17), 1059-1072. https://doi.org/10.1680/macr.13.00051
- Combescure, D. and Sollogoub, P. (2011), IAEA CRP-NFE CAMUS Benchmark Experimental Results and Specifications to the Participants Annex III, International Atomic Energy Agency (IAEA), 19-76.
- Corley, W.G. (1966), "Rotational capacity of reinforced concrete beams", J. Struct. Div., 92(ST5), 121-146. https://doi.org/10.1061/JSDEAG.0001504
- CSA A23.3-14 (2014), Design of Concrete Structures-A National Standard of Canada, Canadian Standards Association (CSA).
- EN 1992-1-1 (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussel, Belgium.
- Ghaderi Bafti, F. (2018), "Characteristics of plastic hinge area in the flanged reinforced concrete shear walls", Ph.D. Dissertation, Islamic Azad University, Iran.
- Kara, I., Ashour, A. and Dundar, C. (2017), "Analysis of R/C frames considering cracking effect and plastic hinge formation", Struct. Eng. Mech., 63(5), 669-681. https://doi.org/10.12989/SEM.2017.63.5.669
- Kazaz, I. (2013), "Analytical study on plastic hinge length of structural walls", J. Struct. Eng., 139(11), 1938-1950. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000770
- Mattock, A.H. (1967), "Discussion of 'rotational capacity of reinforced concrete beams' by W.G. Corley", J. Struct. Div., 93(ST2), 519-522. https://doi.org/10.1061/JSDEAG.0001678
- Mehmood, T., Hussain, K. and Warnitchai, P. (2015), "Seismic evaluation of flexure-shear dominated RC walls in moderate seismic regions", Mag. Concrete Res., 67(18), 1003-1016. https://doi.org/10.1680/macr.14.00344
- Mortezaei, A. and Kheyroddin, A. (2009), "Size effects in reinforced concrete flanged shear walls", Int. J. Civil Eng., 7(1), 27-40.
- Mortezaei, A. and Ronagh, H.R. (2012), "Plastic hinge length of reinforced concrete columns subjected to both far-fault and near-fault ground motions having forward directivity", Struct. Des. Tall Spec. Build., 22(12), 903-926. https://doi.org/10.1002/tal.729
- Mun, J.H. and Yang, K.H. (2015), "Plastic hinge length of reinforced concrete slender shear walls", Mag. Concrete Res., 67(8), 414-429. https://doi.org/10.1680/macr.14.00298
- NEHRP, C.J.V. (2011), Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses, NIST GCR 11-917-15, 256.
- Oesterle, R.G., Aristizabal-Ochoa, J.D., Shiu, K.N. and Corley, W.G. (1984), "Web crushing of reinforced concrete structural walls", ACI J., 81(3), 231-241.
- Palermo, D. and Vecchio, F.J. (2002), "Behavior of threedimensional reinforced concrete shear walls", ACI Struct. J., 99(1), 81-89.
- Panagiotakos, T.B. and Fardis, M.N. (2001), "Deformations of reinforced concrete members at yielding and ultimate", ACI Struct. J., 98(2), 135-148.
- Paulay, T. (1986), "The design of ductile reinforced concrete structural walls for earthquake resistance", Earthq. Spectr., 2(4), 783-823. https://doi.org/10.1193/1.1585411
- Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons.
- Paulay, T. and Priestley, M.J.N. (1993), "Stability of ductile structural walls", ACI Struct. J., 90(4), 385-392.
- Pavel, F. and Lungu, D. (2013), "Correlations between frequency content indicators of strong ground motions and PGV", J. Earthq. Eng., 17(4), 543-559. https://doi.org/10.1080/13632469.2012.762957
- Preti, M. and Giuriani, E. (2011), "Ductility of a structural wall with spread rebars tested in full scale", J. Earthq. Eng., 15(8), 1238-1259. https://doi.org/10.1080/13632469.2011.557139
- Rao, G.V.R., Gopalakrishnan, N., Jaya, K.P., Muthumani, K., Reddy, G.R. and Parulekar, Y.M. (2016), "Studies on nonlinear behavior of shear walls of medium aspect ratio under monotonic and cyclic loading", J. Perform. Constr. Facilit., 30(1), 04014201. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000724
- Salonikios, T. (2007), "Analytical prediction of the inelastic response of RC walls with low aspect ratio", J. Struct. Eng., 133(6), 844-854. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(844)
- Sasani, M. and Kiureghian, A. (2001), "Seismic fragility of RC structural walls: Displacement approach", J. Struct. Eng., 127(2), 219-228. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(219)
- Smyrou, E., Sullivan, T., Priestley, N. and Calvi, M. (2013), "Sectional response of T-shaped RC walls", Bullet. Earthq. Eng., 11(4), 999-1019. https://doi.org/10.1007/s10518-012-9407-2
- Somerville, P. (2005), Guidelines for the Selection, Modification and Scaling of Ground Motion Time Histories, URS, SCEC, COSMOS Annual Meeting, San Francisco, U.S.A.
- Stewart, J.P., Chiou, S.J., Bray, J.D., Graves, R.W., Somerville, P.G. and Abrahamson, N.A. (2002), "Ground motion evaluation procedures for performance-based design", Soil Dyn. Earthq. Eng., 22(9-12), 765-772. https://doi.org/10.1016/S0267-7261(02)00097-0
- Thomsen, J. and Wallace, J. (2004), "Displacement-based design of slender reinforced concrete structural walls-experimental verification", J. Struct. Eng., 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
- Wallace, J. and Moehle, J. (1992), "Ductility and detailing requirements of bearing wall buildings", J. Struct. Eng., 118(6), 1625-1644. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1625)
피인용 문헌
- Structural behavior of sandwich composite wall with truss connectors under compression vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.159
- Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405