References
- Backlund, J. (1978), "On isoparametric elements", Int. J. Numer. Meth. Eng., 12, 731-732. https://doi.org/10.1002/nme.1620120418
- Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, New Jersey, U.S.A.
- Cen, S., Zhou, M.J. and Fu, X.R. (2011a), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010
- Cen, S., Fu, X.R. and Zhou, M.J. (2011b), "8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014
- Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: A simple hybrid-trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234. https://doi.org/10.1002/nme.4632
- Cen, S., Zhou, G.H. and Fu, X.R. (2012), "A shape-free 8-node plane element unsymmetric analytical trial function method", Int. J. Numer. Meth. Eng., 91(2), 158-185. https://doi.org/10.1002/nme.4260
- Cen, S., Zhou, P.L., Li, C.F. and Wu, C.J. (2015), "An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem", Int. J. Numer. Meth. Eng., 103(7), 469-500. https://doi.org/10.1002/nme.4899
- Fu, X.R., Cen, S., Li, C.F. and Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568
- Gifford, L.N. (1979), "More on distorted isoparametric elements", Int. J. Numer. Meth. Eng., 14(2), 290-291. https://doi.org/10.1002/nme.1620140212
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, New Jersey, U.S.A.
- Kumar, S. and Prathap, G. (2008), "Mesh distortion, Locking and the use of metric trial functions for the displacement type finite elements", Struct. Eng. Mech., 29(3), 289-300. https://doi.org/10.12989/sem.2008.29.3.289
- Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Numer. Meth. Eng., 36(20), 3553-3576. https://doi.org/10.1002/nme.1620362009
- Mukherjee, S. and Jafarali, P. (2010), "Prathap's best-fit paradigm and optimal strain recovery points in indeterminate tapered bar analysis using linear element", Int. J. Numer. Meth. Biomed. Eng., 26(10), 1246-1262. https://doi.org/10.1002/cnm.1197
- Mukherjee, S. and Manju, S. (2011), "An improved parametric formulation for the variationally correct distortion immune three-noded bar element", Struct. Eng. Mech., 38(3), 1-21. https://doi.org/10.12989/sem.2011.38.1.001
- Mukherjee, S. and Prathap, G. (2001), "Analysis of shear locking in Timoshenko beam using the function space approach", Commun. Numer. Meth. Eng., 17(6), 385-393. https://doi.org/10.1002/cnm.413
- Mukherjee, S. and Prathap, G. (2002a), "Analysis of delayed convergence in the 3-noded Timoshenko beam using the function space approach", Sadhana, 27, 507-526. https://doi.org/10.1007/BF02703292
- Mukherjee, S. and Prathap, G. (2002b), Variational Correctness in Finite Element Solutions Through Reduced Integration, Bangalore, India.
- Norrie, D.H. and De Vries, G. (1978), An Introduction to Finite Element Analysis, Academic Press, New York, U.S.A.
- Prathap, G. (1993), The Finite Element Method in Structural Mechanics, Kluwer Academic Press, Dordrecht, the Netherlands.
- Prathap, G., Manju, S. and Senthilkumar, V. (2007), "The unsymmetric finite element formulation and variational correctness", Struct. Eng. Mech., 26(1), 31-42. https://doi.org/10.12989/sem.2007.26.1.031
- Prathap, G. and Mukherjee, S. (2003), "The engineer grapples with theorem 1.1 and lemma 6.3 of strang and fix", Curr. Sci., 85(7), 989-994.
- Prathap, G. and Naganarayana, B.P. (1992), "Field-consistency rules for a three-noded shear flexible beam element under nonuniform isoparametric mapping", Int. J. Numer. Meth. Eng., 33(3), 649-664. https://doi.org/10.1002/nme.1620330310
- Prathap, G., Senthilkumar, V. and Manju, S. (2006), "Mesh distortion immunity of finite elements and the best-fit paradigm", Sadhana, 31(5), 505-514. https://doi.org/10.1007/BF02715909
- Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8 node plane element immune to mesh distortion under a quadratic field", Int. J. Numer. Meth. Eng., 58(11), 1718-1748.
- Rajendran, S. and Subramanian, S. (2004), "Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric and metric-parametric formulations", Struct. Eng. Mech., 17(6), 767-788. https://doi.org/10.12989/sem.2004.17.6.767
- Rajendran, S. (2010), "A technique to develop mesh-distortion immune finite elements", Comput. Meth. Appl. Mech. Eng., 199(17), 1044-1063. https://doi.org/10.1016/j.cma.2009.11.017
- Shang, Y., Cen, S., Li, C.F. and Fu, X.R. (2015), "Two generalized conforming quadrilateral Mindlin-Reissner plate elements based on the displacement function", Fin. Elem. Analy. Des., 99, 24-38. https://doi.org/10.1016/j.finel.2015.01.012
- Simo, J. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53, 51-54. https://doi.org/10.1115/1.3171737
- Strang, G. and Fix, G.J. (1973), An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
- Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), "On isoparametric vs. linear strain triangular elements", Int. J. Numer. Meth. Eng., 11(6), 1041-1043. https://doi.org/10.1002/nme.1620110610
- Shang, Y. and Ouyan, W. (2017), "4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion", Int. J. Numer. Meth. Eng., Accepted.
- Zienkiewicz, O.C. (1991), The Finite Element Method, McGraw-Hill, New York, U.S.A.
- Zhou, P.L., Cen, S., Huang, J.B., Li, C.F. and Zhang, Q. (2017), "An unsymmetric 8-node hexahedral element with high distortion tolerance", Int. J. Numer. Meth. Eng., 109(8), 1130-1158. https://doi.org/10.1002/nme.5318