DOI QR코드

DOI QR Code

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S. (CSIR-National Aerospace Laboratories) ;
  • Mukherjee, Somenath (CSIR-Central Mechanical Engineering Research Institute)
  • Received : 2018.10.30
  • Accepted : 2019.01.30
  • Published : 2019.03.25

Abstract

The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

Keywords

References

  1. Backlund, J. (1978), "On isoparametric elements", Int. J. Numer. Meth. Eng., 12, 731-732. https://doi.org/10.1002/nme.1620120418
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, New Jersey, U.S.A.
  3. Cen, S., Zhou, M.J. and Fu, X.R. (2011a), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010
  4. Cen, S., Fu, X.R. and Zhou, M.J. (2011b), "8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014
  5. Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: A simple hybrid-trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234. https://doi.org/10.1002/nme.4632
  6. Cen, S., Zhou, G.H. and Fu, X.R. (2012), "A shape-free 8-node plane element unsymmetric analytical trial function method", Int. J. Numer. Meth. Eng., 91(2), 158-185. https://doi.org/10.1002/nme.4260
  7. Cen, S., Zhou, P.L., Li, C.F. and Wu, C.J. (2015), "An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem", Int. J. Numer. Meth. Eng., 103(7), 469-500. https://doi.org/10.1002/nme.4899
  8. Fu, X.R., Cen, S., Li, C.F. and Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568
  9. Gifford, L.N. (1979), "More on distorted isoparametric elements", Int. J. Numer. Meth. Eng., 14(2), 290-291. https://doi.org/10.1002/nme.1620140212
  10. Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, New Jersey, U.S.A.
  11. Kumar, S. and Prathap, G. (2008), "Mesh distortion, Locking and the use of metric trial functions for the displacement type finite elements", Struct. Eng. Mech., 29(3), 289-300. https://doi.org/10.12989/sem.2008.29.3.289
  12. Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Numer. Meth. Eng., 36(20), 3553-3576. https://doi.org/10.1002/nme.1620362009
  13. Mukherjee, S. and Jafarali, P. (2010), "Prathap's best-fit paradigm and optimal strain recovery points in indeterminate tapered bar analysis using linear element", Int. J. Numer. Meth. Biomed. Eng., 26(10), 1246-1262. https://doi.org/10.1002/cnm.1197
  14. Mukherjee, S. and Manju, S. (2011), "An improved parametric formulation for the variationally correct distortion immune three-noded bar element", Struct. Eng. Mech., 38(3), 1-21. https://doi.org/10.12989/sem.2011.38.1.001
  15. Mukherjee, S. and Prathap, G. (2001), "Analysis of shear locking in Timoshenko beam using the function space approach", Commun. Numer. Meth. Eng., 17(6), 385-393. https://doi.org/10.1002/cnm.413
  16. Mukherjee, S. and Prathap, G. (2002a), "Analysis of delayed convergence in the 3-noded Timoshenko beam using the function space approach", Sadhana, 27, 507-526. https://doi.org/10.1007/BF02703292
  17. Mukherjee, S. and Prathap, G. (2002b), Variational Correctness in Finite Element Solutions Through Reduced Integration, Bangalore, India.
  18. Norrie, D.H. and De Vries, G. (1978), An Introduction to Finite Element Analysis, Academic Press, New York, U.S.A.
  19. Prathap, G. (1993), The Finite Element Method in Structural Mechanics, Kluwer Academic Press, Dordrecht, the Netherlands.
  20. Prathap, G., Manju, S. and Senthilkumar, V. (2007), "The unsymmetric finite element formulation and variational correctness", Struct. Eng. Mech., 26(1), 31-42. https://doi.org/10.12989/sem.2007.26.1.031
  21. Prathap, G. and Mukherjee, S. (2003), "The engineer grapples with theorem 1.1 and lemma 6.3 of strang and fix", Curr. Sci., 85(7), 989-994.
  22. Prathap, G. and Naganarayana, B.P. (1992), "Field-consistency rules for a three-noded shear flexible beam element under nonuniform isoparametric mapping", Int. J. Numer. Meth. Eng., 33(3), 649-664. https://doi.org/10.1002/nme.1620330310
  23. Prathap, G., Senthilkumar, V. and Manju, S. (2006), "Mesh distortion immunity of finite elements and the best-fit paradigm", Sadhana, 31(5), 505-514. https://doi.org/10.1007/BF02715909
  24. Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8 node plane element immune to mesh distortion under a quadratic field", Int. J. Numer. Meth. Eng., 58(11), 1718-1748.
  25. Rajendran, S. and Subramanian, S. (2004), "Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric and metric-parametric formulations", Struct. Eng. Mech., 17(6), 767-788. https://doi.org/10.12989/sem.2004.17.6.767
  26. Rajendran, S. (2010), "A technique to develop mesh-distortion immune finite elements", Comput. Meth. Appl. Mech. Eng., 199(17), 1044-1063. https://doi.org/10.1016/j.cma.2009.11.017
  27. Shang, Y., Cen, S., Li, C.F. and Fu, X.R. (2015), "Two generalized conforming quadrilateral Mindlin-Reissner plate elements based on the displacement function", Fin. Elem. Analy. Des., 99, 24-38. https://doi.org/10.1016/j.finel.2015.01.012
  28. Simo, J. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53, 51-54. https://doi.org/10.1115/1.3171737
  29. Strang, G. and Fix, G.J. (1973), An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
  30. Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), "On isoparametric vs. linear strain triangular elements", Int. J. Numer. Meth. Eng., 11(6), 1041-1043. https://doi.org/10.1002/nme.1620110610
  31. Shang, Y. and Ouyan, W. (2017), "4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion", Int. J. Numer. Meth. Eng., Accepted.
  32. Zienkiewicz, O.C. (1991), The Finite Element Method, McGraw-Hill, New York, U.S.A.
  33. Zhou, P.L., Cen, S., Huang, J.B., Li, C.F. and Zhang, Q. (2017), "An unsymmetric 8-node hexahedral element with high distortion tolerance", Int. J. Numer. Meth. Eng., 109(8), 1130-1158. https://doi.org/10.1002/nme.5318