DOI QR코드

DOI QR Code

Performance analysis of bone scaffolds with carbon nanotubes, barium titanate particles, hydroxyapatite and polycaprolactone

  • Osfooria, Ali (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Selahi, Ehsan (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2018.08.06
  • Accepted : 2019.03.06
  • Published : 2019.03.25

Abstract

This paper presents a novel structural composition for artificial bone scaffolds with an appropriate biocompatibility and biodegradability capability. To achieve this aim, carbon nanotubes, due to their prominent mechanical properties, high biocompatibility with the body and its structural similarities with the natural bone structure are selected in component of the artificial bone structure. Also, according to the piezoelectric properties of natural bone tissue, the barium titanate, which is one of the biocompatible material with body and has piezoelectric property, is used to create self-healing ability. Furthermore, due to the fact that, most of the bone tissue is consists of hydroxyapatite, this material is also added to the artificial bone structure. Finally, polycaprolactone is used in synthetic bone composition as a proper substrate for bone growth and repair. To demonstrate, performance of the presented composition, the mechanical behaviour of the bone scaffold is simulated using ANSYS Workbench software and three dimensional finite element modelling. The obtained results are compared with mechanical behaviour of the natural bone and the previous bone scaffold compositions. The results indicated that, the modulus of elasticity, strength and toughness of the proposed composition of bone scaffold is very close to the natural bone behaviour with respect to the previous bone scaffold compositions and this composition can be employed as an appropriate replacement for bone implants.

Keywords

References

  1. Ball, J.P., Mound, B.A., Nino, J.C. and Allen, J.B. (2014), "Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications", J. Biomed. Mater. Res., 102(7), 2089-2095. https://doi.org/10.1002/jbm.a.34879
  2. Clendenin, J., Kim, J.W. and Tung, S. (2007), "An aligned carbon nanotube biosensor for DNA detection", Proceedings of the 2nd IEEE Conference on Nanotechnology, Bangkok, Thailand, April.
  3. Doty, H.A., Courtney, H.S., Jennings, J.A., Haggard, W.O. and Bumgardner, J.D. (2015), "Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold", Biomater. Biomech. Bioeng., 2(3), 159-172. https://doi.org/10.12989/BME.2015.2.3.159
  4. Fang, Z., Starly, B. and Sun, H. (2005), "Computer-aided characterization for effective mechanical properties of porous tissue scaffolds", Comput. Aid. Des., 37(1), 65-72. https://doi.org/10.1016/j.cad.2004.04.002
  5. Gao, X.L. and Li, K. (2005), "A shear lag model for carbon nanotube-reinforced polymer composite", Int. J. Sol. Struct., 42(5-6), 1649-1667. https://doi.org/10.1016/j.ijsolstr.2004.08.020
  6. Genchi, G.G., Marino, A., Rocca, A., Mattoli, V. and Ciofani, G. (2016), "Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine", Nanotechnol., 27(23), 232001. https://doi.org/10.1088/0957-4484/27/23/232001
  7. Gutierrez-Hernandez, J.M., Escobar-Garcia, D.M., Escalante, A., Flores, H., Gonzalez. F.J., Gatenholm, P. and Toriz, G. (2017), "In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multiwalled carbon nanotubes as scaffold for bone regeneration", Mater. Sci. Eng. C, 75, 445-453. https://doi.org/10.1016/j.msec.2017.02.074
  8. Hao, J., Yuan, M. and Deng, X. (2003), "Biodegradable and biocompatiable nano composite of poly (${\varepsilon}caprolactone$) with hydroxyapatite nanocrystals: Thermal and mechanical properties", J. Appl. Polym. Sci., 86, 676-683. https://doi.org/10.1002/app.10955
  9. Hilder, T.A. and Hill, J.M. (2008), "Carbon nanotubes as drug delivery nanocapsules", Curr. Appl. Phys., 8(3-4), 258-261. https://doi.org/10.1016/j.cap.2007.10.011
  10. Hirata, E., Uo, M., Takita, H., Akasaka T., Watari, F. and Yokoyama, A. (2011), "Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering", Carb., 49(10), 3284-3291. https://doi.org/10.1016/j.carbon.2011.04.002
  11. Huiskes, R., Ruimerman, R., Van Lenthe, G.H. and Janssen, J.D. (2000), "Effects of mechanical forces on maintenance and adaptation of form in trabecular bone", Nat., 405(6787), 704-706. https://doi.org/10.1038/35015116
  12. Jamilpour, N., Fereidon, A. and Rouhi, G. (2011a), "The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process", J. Biomed. Nanotechnol., 7(4), 1-7. https://doi.org/10.1166/jbn.2011.1171
  13. Jamilpour, N., Fereidon, A. and Rouhi, G. (2011b), "Cracks behavior in artificial and natural bone samples; a comparison from bone remodeling point-of-view", Proceedings of the 2nd International Conference on Nanotechnology: Fundamental and Applications, Ottawa, Canada, July.
  14. Langer, R. and Vacanti, J.P. (1993), "Tissue engineering", Sci., 260(5110), 920-926. https://doi.org/10.1126/science.8493529
  15. Li, M. (2010), "Modeling of the dispensing-based tissue scaffold fabrication processes", Ph.D. Dissertation, University of Saskatchewan, Canada.
  16. Mattioli-Belmonte, M., Vozzi, G., Whulanza, Y., Seggiani, M., Fantauzzi, V., Orsini, G. and Ahluwalia, A. (2012), "Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds", Mater. Sci. Eng. C, 32(2), 152-159. https://doi.org/10.1016/j.msec.2011.10.010
  17. Meyers, M.A., Chen, P.Y., Lin, A. and Seki, Y. (2008), "Biological materials: Structure and mechanical properties", Prog. Mater. Sci., 53(1), 1-206. https://doi.org/10.1016/j.pmatsci.2007.05.002
  18. Mullender, M.G., Van der Meer, D.D., Huiskes, R. and Lips, P. (1996), "Osteocyte density change in aging and osteoporosis", Bone, 18(2), 109-113. https://doi.org/10.1016/8756-3282(95)00444-0
  19. Nerem, R.M. and Sambanis, A. (1995) "Tissue engineering: From biology to biological substitutes", Tissue Eng., 1(1), 3-13. https://doi.org/10.1089/ten.1995.1.3
  20. PourAkbar Saffar, K., Arshi, A.R., Jamilpour, N., Najafi, A.R., Rouhi, G. and Sudak, L. (2010), "A crosslinking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold", J. Bomed. Mater. Res., 94A(2), 594-602.
  21. PourAkbar Saffar, K., Jamilpor, N. and Rouhi, G. (2009), "Carbon nanotube in bone tissue engineering, in biomedical engineering", InTECH.
  22. PourAkbar Saffar, K., Reaisi Najafi, A., Rouhi, G., Arshi, A. and Fereidon, A. (2008), "A finite element model for estimating Young's modulus of carbon nanotube reinforced composites incorporating elastic cross-links", Int. J. Mech. Syst. Sci. Eng., 2, 11-25.
  23. Rodrigues, A.A., Batista, N.A., Bavaresco, V.P., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., Santos, J.A.R. and Belangero, W.D. (2012), "Polyvinyl alcohol associated with carbon nanotube scaffolds for osteogenic differentiation of rat bone mesenchymal stem cells", Carb., 50(2), 450-459. https://doi.org/10.1016/j.carbon.2011.08.071
  24. Ruimerman, R., Hilbers, P., Van Rietbergen, B. and Huiskes, R. (2005), "A theoretical framework for strainrelated trabecular bone maintenance and adaptation", J. Biomech., 38(4), 931-941. https://doi.org/10.1016/j.jbiomech.2004.03.037
  25. Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J. and Mikos, A.G. (2007), "Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering", Biomater., 28(28), 4078-4090. https://doi.org/10.1016/j.biomaterials.2007.05.033
  26. Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B, 36(5), 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
  27. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinbergd, S.E., Hollister, S.J. and Das, S. (2005), "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering", Biomater., 26(23), 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
  28. Xing, X., Chen, Y., Yan, X.T. and Zhang, G.Y. (2016), "Design of the artificial bone scaffolds based on the multi-field coupling model", Proc. CIRP, 56, 95-99. https://doi.org/10.1016/j.procir.2016.10.025
  29. Zanello, L.P., Zhao, B., Hu, H. and Haddon, R.C. (2006), "Bone cell proliferation on carbon nanotubes", Nano Lett., 6(3), 562-567. https://doi.org/10.1021/nl051861e
  30. Zhao, B., Hu, H., Mandal, S.K. and Haddon, R.C. (2005), "A bone mimic based on the self-assembly of hydroxyapatite on chemistry functionalized single-walled carbon nanotubes", Chem. Mater., 17(12), 3235-3241. https://doi.org/10.1021/cm0500399