References
- Ball, J.P., Mound, B.A., Nino, J.C. and Allen, J.B. (2014), "Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications", J. Biomed. Mater. Res., 102(7), 2089-2095. https://doi.org/10.1002/jbm.a.34879
- Clendenin, J., Kim, J.W. and Tung, S. (2007), "An aligned carbon nanotube biosensor for DNA detection", Proceedings of the 2nd IEEE Conference on Nanotechnology, Bangkok, Thailand, April.
- Doty, H.A., Courtney, H.S., Jennings, J.A., Haggard, W.O. and Bumgardner, J.D. (2015), "Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold", Biomater. Biomech. Bioeng., 2(3), 159-172. https://doi.org/10.12989/BME.2015.2.3.159
- Fang, Z., Starly, B. and Sun, H. (2005), "Computer-aided characterization for effective mechanical properties of porous tissue scaffolds", Comput. Aid. Des., 37(1), 65-72. https://doi.org/10.1016/j.cad.2004.04.002
- Gao, X.L. and Li, K. (2005), "A shear lag model for carbon nanotube-reinforced polymer composite", Int. J. Sol. Struct., 42(5-6), 1649-1667. https://doi.org/10.1016/j.ijsolstr.2004.08.020
- Genchi, G.G., Marino, A., Rocca, A., Mattoli, V. and Ciofani, G. (2016), "Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine", Nanotechnol., 27(23), 232001. https://doi.org/10.1088/0957-4484/27/23/232001
- Gutierrez-Hernandez, J.M., Escobar-Garcia, D.M., Escalante, A., Flores, H., Gonzalez. F.J., Gatenholm, P. and Toriz, G. (2017), "In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multiwalled carbon nanotubes as scaffold for bone regeneration", Mater. Sci. Eng. C, 75, 445-453. https://doi.org/10.1016/j.msec.2017.02.074
-
Hao, J., Yuan, M. and Deng, X. (2003), "Biodegradable and biocompatiable nano composite of poly (
${\varepsilon}caprolactone$ ) with hydroxyapatite nanocrystals: Thermal and mechanical properties", J. Appl. Polym. Sci., 86, 676-683. https://doi.org/10.1002/app.10955 - Hilder, T.A. and Hill, J.M. (2008), "Carbon nanotubes as drug delivery nanocapsules", Curr. Appl. Phys., 8(3-4), 258-261. https://doi.org/10.1016/j.cap.2007.10.011
- Hirata, E., Uo, M., Takita, H., Akasaka T., Watari, F. and Yokoyama, A. (2011), "Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering", Carb., 49(10), 3284-3291. https://doi.org/10.1016/j.carbon.2011.04.002
- Huiskes, R., Ruimerman, R., Van Lenthe, G.H. and Janssen, J.D. (2000), "Effects of mechanical forces on maintenance and adaptation of form in trabecular bone", Nat., 405(6787), 704-706. https://doi.org/10.1038/35015116
- Jamilpour, N., Fereidon, A. and Rouhi, G. (2011a), "The effects of replacing collagen fibers with carbon nanotubes on the rate of bone remodeling process", J. Biomed. Nanotechnol., 7(4), 1-7. https://doi.org/10.1166/jbn.2011.1171
- Jamilpour, N., Fereidon, A. and Rouhi, G. (2011b), "Cracks behavior in artificial and natural bone samples; a comparison from bone remodeling point-of-view", Proceedings of the 2nd International Conference on Nanotechnology: Fundamental and Applications, Ottawa, Canada, July.
- Langer, R. and Vacanti, J.P. (1993), "Tissue engineering", Sci., 260(5110), 920-926. https://doi.org/10.1126/science.8493529
- Li, M. (2010), "Modeling of the dispensing-based tissue scaffold fabrication processes", Ph.D. Dissertation, University of Saskatchewan, Canada.
- Mattioli-Belmonte, M., Vozzi, G., Whulanza, Y., Seggiani, M., Fantauzzi, V., Orsini, G. and Ahluwalia, A. (2012), "Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds", Mater. Sci. Eng. C, 32(2), 152-159. https://doi.org/10.1016/j.msec.2011.10.010
- Meyers, M.A., Chen, P.Y., Lin, A. and Seki, Y. (2008), "Biological materials: Structure and mechanical properties", Prog. Mater. Sci., 53(1), 1-206. https://doi.org/10.1016/j.pmatsci.2007.05.002
- Mullender, M.G., Van der Meer, D.D., Huiskes, R. and Lips, P. (1996), "Osteocyte density change in aging and osteoporosis", Bone, 18(2), 109-113. https://doi.org/10.1016/8756-3282(95)00444-0
- Nerem, R.M. and Sambanis, A. (1995) "Tissue engineering: From biology to biological substitutes", Tissue Eng., 1(1), 3-13. https://doi.org/10.1089/ten.1995.1.3
- PourAkbar Saffar, K., Arshi, A.R., Jamilpour, N., Najafi, A.R., Rouhi, G. and Sudak, L. (2010), "A crosslinking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold", J. Bomed. Mater. Res., 94A(2), 594-602.
- PourAkbar Saffar, K., Jamilpor, N. and Rouhi, G. (2009), "Carbon nanotube in bone tissue engineering, in biomedical engineering", InTECH.
- PourAkbar Saffar, K., Reaisi Najafi, A., Rouhi, G., Arshi, A. and Fereidon, A. (2008), "A finite element model for estimating Young's modulus of carbon nanotube reinforced composites incorporating elastic cross-links", Int. J. Mech. Syst. Sci. Eng., 2, 11-25.
- Rodrigues, A.A., Batista, N.A., Bavaresco, V.P., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., Santos, J.A.R. and Belangero, W.D. (2012), "Polyvinyl alcohol associated with carbon nanotube scaffolds for osteogenic differentiation of rat bone mesenchymal stem cells", Carb., 50(2), 450-459. https://doi.org/10.1016/j.carbon.2011.08.071
- Ruimerman, R., Hilbers, P., Van Rietbergen, B. and Huiskes, R. (2005), "A theoretical framework for strainrelated trabecular bone maintenance and adaptation", J. Biomech., 38(4), 931-941. https://doi.org/10.1016/j.jbiomech.2004.03.037
- Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J. and Mikos, A.G. (2007), "Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering", Biomater., 28(28), 4078-4090. https://doi.org/10.1016/j.biomaterials.2007.05.033
- Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B, 36(5), 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003
- Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinbergd, S.E., Hollister, S.J. and Das, S. (2005), "Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering", Biomater., 26(23), 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
- Xing, X., Chen, Y., Yan, X.T. and Zhang, G.Y. (2016), "Design of the artificial bone scaffolds based on the multi-field coupling model", Proc. CIRP, 56, 95-99. https://doi.org/10.1016/j.procir.2016.10.025
- Zanello, L.P., Zhao, B., Hu, H. and Haddon, R.C. (2006), "Bone cell proliferation on carbon nanotubes", Nano Lett., 6(3), 562-567. https://doi.org/10.1021/nl051861e
- Zhao, B., Hu, H., Mandal, S.K. and Haddon, R.C. (2005), "A bone mimic based on the self-assembly of hydroxyapatite on chemistry functionalized single-walled carbon nanotubes", Chem. Mater., 17(12), 3235-3241. https://doi.org/10.1021/cm0500399