References
- Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D. and Tartaglia, G. G. (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29, 2928-2930. https://doi.org/10.1093/bioinformatics/btt495
- Ansari, K. I., Kasiri, S. and Mandal, S. S. (2013) Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene 32, 3359-3370. https://doi.org/10.1038/onc.2012.352
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W. and Noble, W. S. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208. https://doi.org/10.1093/nar/gkp335
- Bolshan, Y., Getlik, M., Kuznetsova, E., Wasney, G. A., Hajian, T., Poda, G., Nguyen, K. T., Wu, H., Dombrovski, L., Dong, A., Senisterra, G., Schapira, M., Arrowsmith, C. H., Brown, P. J., Al-Awar, R., Vedadi, M. and Smil, D. (2013) Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5-MLL Interaction. ACS Med. Chem. Lett. 4, 353-357. https://doi.org/10.1021/ml300467n
- Borkin, D., He, S., Miao, H., Kempinska, K., Pollock, J., Chase, J., Purohit, T., Malik, B., Zhao, T., Wang, J., Wen, B., Zong, H., Jones, M., Danet-Desnoyers, G., Guzman, M. L., Talpaz, M., Bixby, D. L., Sun, D., Hess, J. L., Muntean, A. G., Maillard, I., Cierpicki, T. and Grembecka, J. (2015) Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589-602. https://doi.org/10.1016/j.ccell.2015.02.016
- Cao, F., Townsend, E. C., Karatas, H., Xu, J., Li, L., Lee, S., Liu, L., Chen, Y., Ouillette, P., Zhu, J., Hess, J. L., Atadja, P., Lei, M., Qin, Z. S., Malek, S., Wang, S. and Dou, Y. (2014) Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53, 247-261. https://doi.org/10.1016/j.molcel.2013.12.001
- Cho, M., Xiao, Y., Nie, J., Stewart, R., Csordas, A. T., Oh, S. S., Thomson, J. A. and Soh, H. T. (2010) Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl. Acad. Sci. U.S.A. 107, 15373-15378. https://doi.org/10.1073/pnas.1009331107
- Cosgrove, M. S. and Patel, A. (2010) Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J. 277, 1832-1842. https://doi.org/10.1111/j.1742-4658.2010.07609.x
- Dou, Y. and Hess, J. L. (2008) Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int. J. Hematol. 87, 10-18. https://doi.org/10.1007/s12185-007-0009-8
- Dou, Y., Milne, T. A., Ruthenburg, A. J., Lee, S., Lee, J. W., Verdine, G. L., Allis, C. D. and Roeder, R. G. (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713-719. https://doi.org/10.1038/nsmb1128
- Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822. https://doi.org/10.1038/346818a0
- Frith, M. C., Saunders, N. F., Kobe, B. and Bailey, T. L. (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 4, e1000071. https://doi.org/10.1371/journal.pcbi.1000071
- Hess, J. L. (2004) MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med. 10, 500-507. https://doi.org/10.1016/j.molmed.2004.08.005
- Hoon, S., Zhou, B., Janda, K. D., Brenner, S. and Scolnick, J. (2011) Aptamer selection by high-throughput sequencing and informatic analysis. Biotechniques 51, 413-416.
- Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P. and Korsmeyer, S. J. (2003) Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol. Cell. Biol. 23, 186-194. https://doi.org/10.1128/MCB.23.1.186-194.2003
- Jeong, K. W., Andreu-Vieyra, C., You, J. S., Jones, P. A. and Stallcup, M. R. (2014) Establishment of active chromatin structure at enhancer elements by mixed-lineage leukemia 1 to initiate estrogendependent gene expression. Nucleic Acids Res. 42, 2245-2256. https://doi.org/10.1093/nar/gkt1236
- Karatas, H., Townsend, E. C., Cao, F., Chen, Y., Bernard, D., Liu, L., Lei, M., Dou, Y. and Wang, S. (2013) High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. J. Am. Chem. Soc. 135, 669-682. https://doi.org/10.1021/ja306028q
- Marschalek, R. (2010) Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J. 277, 1822-1831. https://doi.org/10.1111/j.1742-4658.2010.07608.x
- Milne, T. A., Briggs, S. D., Brock, H. W., Martin, M. E., Gibbs, D., Allis, C. D. and Hess, J. L. (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107-1117. https://doi.org/10.1016/S1097-2765(02)00741-4
- Milne, T. A., Dou, Y., Martin, M. E., Brock, H. W., Roeder, R. G. and Hess, J. L. (2005) MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. U.S.A. 102, 14765-14770. https://doi.org/10.1073/pnas.0503630102
- Morillon, A., Karabetsou, N., Nair, A. and Mellor, J. (2005) Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol. Cell 18, 723-734. https://doi.org/10.1016/j.molcel.2005.05.009
- Nieuwlandt, D. (2000) In vitro selection of functional nucleic acid sequences. Curr. Issues Mol. Biol. 2, 9-16.
- Patel, A., Dharmarajan, V., Vought, V. E. and Cosgrove, M. S. (2009) On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284, 24242-24256. https://doi.org/10.1074/jbc.M109.014498
- Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J. and Adamiak, R. W. (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112. https://doi.org/10.1093/nar/gks339
- Schutze, T., Wilhelm, B., Greiner, N., Braun, H., Peter, F., Morl, M., Erdmann, V. A., Lehrach, H., Konthur, Z., Menger, M., Arndt, P. F. and Glokler, J. (2011) Probing the SELEX process with next-generation sequencing. PLoS ONE 6, e29604. https://doi.org/10.1371/journal.pone.0029604
- Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. and Wilson, J. R. (2009) Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 33, 181-191. https://doi.org/10.1016/j.molcel.2008.12.029
- Terranova, R., Agherbi, H., Boned, A., Meresse, S. and Djabali, M. (2006) Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl. Acad. Sci. U.S.A. 103, 6629-6634. https://doi.org/10.1073/pnas.0507425103
- Thiel, A. T., Blessington, P., Zou, T., Feather, D., Wu, X., Yan, J., Zhang, H., Liu, Z., Ernst, P., Koretzky, G. A. and Hua, X. (2010) MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148-159. https://doi.org/10.1016/j.ccr.2009.12.034
- Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. https://doi.org/10.1126/science.2200121
- Tuszynska, I., Magnus, M., Jonak, K., Dawson, W. and Bujnicki, J. M. (2015) NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res. 43, W425-430. https://doi.org/10.1093/nar/gkv493
- Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L. and Ohki, M. (2002) Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100, 3710-3718. https://doi.org/10.1182/blood-2002-04-1015
- Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. and Korsmeyer, S. J. (1995) Altered Hox expression and segmental identity in Mllmutant mice. Nature 378, 505-508. https://doi.org/10.1038/378505a0
- Ziemin-van der Poel, S., McCabe, N. R., Gill, H. J., Espinosa, R., 3rd, Patel, Y., Harden, A., Rubinelli, P., Smith, S. D., LeBeau, M. M., Rowley, J. D. and Diaz, M. O. (1991) Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. U.S.A. 88, 10735-10739. https://doi.org/10.1073/pnas.88.23.10735
- Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595