References
- Burton, N. C., Kensler, T. W. and Guilarte, T. R. (2006) In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology 27, 1094-1100. https://doi.org/10.1016/j.neuro.2006.07.019
- Chen, P. C., Vargas, M. R., Pani, A. K., Smeyne, R. J., Johnson, D. A., Kan, Y. W. and Johnson, J. A. (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: critical role for the astrocyte. Proc. Natl. Acad. Sci. U.S.A. 106, 2933-2938. https://doi.org/10.1073/pnas.0813361106
- Chen, W. F., Wu, L., Du, Z. R., Chen, L., Xu, A. L., Chen, X. H., Teng, J. J. and Wong, M. S. (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25, 93-99. https://doi.org/10.1016/j.phymed.2016.12.017
- Gan, L., Vargas, M. R., Johnson, D. A. and Johnson, J. A. (2012) Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J. Neurosci. 32, 17775-17787. https://doi.org/10.1523/JNEUROSCI.3049-12.2012
- Gomez Castellanos, J. R., Prieto, J. M. and Heinrich, M. (2009) Red Lapacho (Tabebuiaimpetiginosa)-a global ethnopharmacological commodity? J. Ethnopharmacol. 121, 1-13. https://doi.org/10.1016/j.jep.2008.10.004
- Jackson-Lewis, V. and Przedborski, S. (2007) Protocol for the MPTP mouse model of Parkinson's disease. Nat. Protoc. 2,141-151. https://doi.org/10.1038/nprot.2006.342
- Jakel, R. J., Townsend, J. A., Kraft, A. D. and Johnson, J. A. (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 1144, 192-201. https://doi.org/10.1016/j.brainres.2007.01.131
-
Jo, M. G., Ikram, M, Jo, M. H., Yoo, L., Chung, K. C., Nah, S. Y., Hwang, H., Rhim, H. and Kim, M. O. (2019) Gintoin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of
${\alpha}$ -synuclein via the Nrf2/HO-1 pathway. Mol. Neurobiol. 56, 39-55. https://doi.org/10.1007/s12035-018-1020-1 - Johnson, D. A. and Johnson, J. A. (2015) Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radic. Biol. Med. 88, 253-267. https://doi.org/10.1016/j.freeradbiomed.2015.07.147
- Hussain, H. and Green, I. R. (2017) Lapachol and lapachone analogs: a journey of two decades of patent research (1997-2016). Expert. Opin. Ther. Pat. 27, 1111-1121. https://doi.org/10.1080/13543776.2017.1339792
- Kim, A. Y., Jeong, K. H., Lee, J. H., Kang, Y., Lee, S. H. and Baik, E. J. (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340, 487-500. https://doi.org/10.1016/j.neuroscience.2016.11.007
-
Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015)
${\beta}$ -Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z -
Lee, M., Ban, J. J., Chung, J. Y., Im, W. and Kim, M. (2018) Amelioration of Huntington's disease phenotypes by
${\beta}$ -lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-$1{\alpha}$ deacetylation. PLoS ONE 9, e0195968. - Liddell, J. R. (2017) Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants 6, 65. https://doi.org/10.3390/antiox6030065
-
Oh, G. S., Kim, H. J., Choi, J. H., Shen, A., Choe, S. K., Karna, A., Lee, S. H., Jo H. J., Yang, S. H., Kwak, T. H., Lee, C. H., Par, R. and So, H. S. (2014) Pharmacological activation of NQO1 increases
$NAD^+$ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547-560. https://doi.org/10.1038/ki.2013.330 -
Park, J. S., Lee, Y. Y., Kim, J., Seo, H. and Kim, H. S. (2016)
${\beta}$ -Lapachone increases phase II antioxidant enzyme expression via NQO1-AMPK/PI3K-Nrf2/ARE signaling in rat primary astrocytes. Free Radic. Biol. Med. 97, 168-178. https://doi.org/10.1016/j.freeradbiomed.2016.05.024 - Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E. and Lang, A. E. (2017) Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
- Przedborski, S. (2017) The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18, 251-259. https://doi.org/10.1038/nrn.2017.25
- Puspita, L., Chung, S. Y. and Shim, J. W. (2017) Oxidative stress and cellular pathologies in Parkinson's disease. Mol. Brain 10, 53. https://doi.org/10.1186/s13041-017-0340-9
-
Schaffner-Sabba, K., Schmidt-Ruppin, K. H., Wehrli, W., Schuerch, A. R. and Wasley, J. W. (1984)
${\beta}$ -Lapachone: synthesis of derivatives and activities in tumor models. J. Med. Chem. 27, 990-994. https://doi.org/10.1021/jm00374a010 - Tieu, K. (2011) A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb. Perspect. Med. 1, a009316. https://doi.org/10.1101/cshperspect.a009316
- Vargas, M. R., Johnson, D. A., Sirkis, D. W., Messing, A. and Johnson, J. A. (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J. Neurosci. 28, 13574-13581. https://doi.org/10.1523/JNEUROSCI.4099-08.2008
- Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev. Mol. Med. 11, e17. https://doi.org/10.1017/S1462399409001094
-
Xu, J., Wagoner, G., Douglas, J. C. and Drew, P. D. (2013)
${\beta}$ -Lapachone ameliorization of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 254, 46-54. https://doi.org/10.1016/j.jneuroim.2012.09.004 - Yamada, M., Oligino, T., Mata, M., Goss, J. R., Glorioso, J. C. and Fink, D. J. (1999) Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc. Natl. Acad. Sci. U.S.A. 96, 4078-4083. https://doi.org/10.1073/pnas.96.7.4078
- Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J. and Zhang, F. (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 100, 30-47. https://doi.org/10.1016/j.pneurobio.2012.09.003
Cited by
- Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling vol.8, pp.7, 2019, https://doi.org/10.3390/cells8070760
- The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models vol.16, pp.1, 2019, https://doi.org/10.1186/s12974-019-1649-3
- Ferulic Acid Ameliorates MPP+/MPTP-Induced Oxidative Stress via ERK1/2-Dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment vol.57, pp.7, 2019, https://doi.org/10.1007/s12035-020-01934-1
- Neuroprotective Effect of Antioxidants in the Brain vol.21, pp.19, 2019, https://doi.org/10.3390/ijms21197152
- Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases vol.10, pp.1, 2021, https://doi.org/10.3390/foods10010029
- Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson’s Disease vol.12, 2021, https://doi.org/10.3389/fphar.2021.757161
- Highlighting the Protective or Degenerative Role of AMPK Activators in Dementia Experimental Models vol.20, 2019, https://doi.org/10.2174/1871527320666210526160214
- Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders vol.10, pp.8, 2019, https://doi.org/10.3390/cells10082019
- The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicin‐induced cardiotoxicity: A review vol.36, pp.1, 2019, https://doi.org/10.1002/jbt.22946