DOI QR코드

DOI QR Code

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Park, Se Jin (School of Natural Resources and Environmental Sciences, Kangwon National University) ;
  • Choi, Ji Woong (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
  • 투고 : 2018.05.17
  • 심사 : 2018.05.29
  • 발행 : 2019.03.01

초록

Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

키워드

참고문헌

  1. Benveniste, E. N. (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. 75, 165-173. https://doi.org/10.1007/s001090050101
  2. Choi, J. G., Kim, S. Y., Jeong, M. and Oh, M. S. (2018) Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol. Ther. 182, 56-69. https://doi.org/10.1016/j.pharmthera.2017.08.010
  3. Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., Teo, S. T., Yung, Y. C., Lu, M., Kennedy, G. and Chun, J. (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl. Acad. Sci. U.S.A. 108, 751-756. https://doi.org/10.1073/pnas.1014154108
  4. Compston, A. and Coles, A. (2008) Multiple sclerosis. Lancet 372, 1502-1517. https://doi.org/10.1016/S0140-6736(08)61620-7
  5. Duffy, S. S., Lees, J. G. and Moalem-Taylor, G. (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult. Scler. Int. 2014, 285245.
  6. Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S. and Korlakunta, J. N. (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 127, 515-520. https://doi.org/10.1016/j.jep.2009.10.004
  7. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. and Mills, K. H. (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1-11. https://doi.org/10.1111/j.1365-2249.2010.04143.x
  8. Frischer, J. M., Bramow, S., Dal-Bianco, A., Lucchinetti, C. F., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P. S. and Lassmann, H. (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175-1189. https://doi.org/10.1093/brain/awp070
  9. Gaire, B. P., Kwon, O. W., Park, S. H., Chun, K. H., Kim, S. Y., Shin, D. Y. and Choi, J. W. (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS ONE 10, e0120203. https://doi.org/10.1371/journal.pone.0120203
  10. Goverman, J. (2009) Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393-407. https://doi.org/10.1038/nri2550
  11. Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63, 211-223. https://doi.org/10.1016/j.neuropharm.2012.03.016
  12. Han, M. H., Hwang, S. I., Roy, D. B., Lundgren, D. H., Price, J. V., Ousman, S. S., Fernald, G. H., Gerlitz, B., Robinson, W. H., Baranzini, S. E., Grinnell, B. W., Raine, C. S., Sobel, R. A., Han, D. K. and Steinman, L. (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076-1081. https://doi.org/10.1038/nature06559
  13. Hauser, S. L., Chan, J. R. and Oksenberg, J. R. (2013) Multiple sclerosis: prospects and promise. Ann. Neurol. 74, 317-327. https://doi.org/10.1002/ana.24009
  14. Jafarzadeh, A., Arabi, Z., Ahangar-Parvin, R., Mohammadi-Kordkhayli, M. and Nemati, M. (2017) Ginger extract modulates the expression of chemokines CCL20 and CCL22 and their receptors (CCR6 and CCR4) in the central nervous system of mice with experimental autoimmune encephalomyelitis. Drug Res. (Stuttg.) 67, 632-639. https://doi.org/10.1055/s-0043-113455
  15. Jafarzadeh, A., Mohammadi-Kordkhayli, M., Ahangar-Parvin, R., Azizi, V., Khoramdel-Azad, H., Shamsizadeh, A., Ayoobi, A., Nemati, M., Hassan, Z. M., Moazeni, S. M. and Khaksari, M. (2014) Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. J. Neuroimmunol. 276, 80-88. https://doi.org/10.1016/j.jneuroim.2014.08.614
  16. Jo, S. K., Kim, I. S., Rehman, S. U., Ha, S. K., Park, H. Y., Park, Y. K. and Yoo, H. H. (2016) Characterization of metabolites produced from the biotransformation of 6-shogaol formed by Aspergillus niger. Eur. Food Res. Technol. 242, 137-142. https://doi.org/10.1007/s00217-015-2519-6
  17. Kyung, K. S., Gon, J. H., Geun, K. Y., Sup, J. J., Suk, W. J. and Ho, K. J. (2006) 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury. Eur. J. Neurosci. 24, 1042-1052. https://doi.org/10.1111/j.1460-9568.2006.04908.x
  18. Lassmann, H. and Bradl, M. (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol. 133, 223-244. https://doi.org/10.1007/s00401-016-1631-4
  19. Lee, C. H., Jeon, S. J., Cho, K. S., Moon, E., Sapkota, A., Jun, H. S., Ryu, J. H. and Choi, J. W. (2018) Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses. Mol. Neurobiol. 55, 3007-3020. https://doi.org/10.1007/s12035-017-0550-2
  20. Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X. and Zou, D. (2017) The role of microglia in multiple sclerosis. Neuropsychiatr. Dis. Treat. 13, 1661-1667. https://doi.org/10.2147/NDT.S140634
  21. Luo, J., Ho, P. P., Buckwalter, M. S., Hsu, T., Lee, L. Y., Zhang, H., Kim, D. K., Kim, S. J., Gambhir, S. S., Steinman, L. and Wyss-Coray, T. (2007) Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Invest. 117, 3306-3315. https://doi.org/10.1172/JCI31763
  22. Malmestrom, C., Haghighi, S., Rosengren, L., Andersen, O. and Lycke, J. (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61, 1720-1725. https://doi.org/10.1212/01.WNL.0000098880.19793.B6
  23. Mascolo, N., Jain, R., Jain, S. C. and Capasso, F. (1989) Ethnopharmacologic investigation of ginger (Zingiber officinale). J. Ethnopharmacol. 27, 129-140. https://doi.org/10.1016/0378-8741(89)90085-8
  24. Mehdizadeh, M., Dabaghian, F., Nejhadi, A., Fallah-Huseini, H., Choopani, S., Shekarriz, N., Molavi, N., Basirat, A., Mohammadzadeh Kazorgah, F., Samzadeh-Kermani, A. and Soleimani Asl, S. (2012) Zingiber officinale alters 3,4-methylenedioxymethamphetamineinduced neurotoxicity in rat brain. Cell J. 14, 177-184.
  25. Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M. and Eisdorfer, C. (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. 202, 13-23. https://doi.org/10.1016/S0022-510X(02)00207-1
  26. Moon, M., Kim, H. G., Choi, J. G., Oh, H., Lee, P. K., Ha, S. K., Kim, S. Y., Park, Y., Huh, Y. and Oh, M. S. (2014) 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem. Biophys. Res. Commun. 449, 8-13. https://doi.org/10.1016/j.bbrc.2014.04.121
  27. Nagendra chari, K. L., Manasa, D., Srinivas, P. and Sowbhagya, H. B. (2013) Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem. 139, 509-514. https://doi.org/10.1016/j.foodchem.2013.01.099
  28. Nair, A., Frederick, T. J. and Miller, S. D. (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell. Mol. Life Sci. 65, 2702-2720. https://doi.org/10.1007/s00018-008-8059-5
  29. Ok, S. and Jeong, W. S. (2012) Optimization of extraction conditions for the 6-shogaol-rich extract from ginger (Zingiber officinale Roscoe). Prev. Nutr. Food Sci. 17, 166-171. https://doi.org/10.3746/pnf.2012.17.2.166
  30. Park, G., Kim, H. G., Ju, M. S., Ha, S. K., Park, Y., Kim, S. Y. and Oh, M. S. (2013) 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 34, 1131-1139. https://doi.org/10.1038/aps.2013.57
  31. Raivich, G. and Banati, R. (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Brain Res. Rev. 46, 261-281. https://doi.org/10.1016/j.brainresrev.2004.06.006
  32. Renno, T., Krakowski, M., Piccirillo, C., Lin, J. Y. and Owens, T. (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol. 154, 944-953.
  33. Reynolds, R., Roncaroli, F., Nicholas, R., Radotra, B., Gveric, D. and Howell, O. (2011) The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 122, 155-170. https://doi.org/10.1007/s00401-011-0840-0
  34. Sharief, M. K. and Hentges, R. (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N. Engl. J. Med. 325, 467-472. https://doi.org/10.1056/NEJM199108153250704
  35. Shim, S., Kim, S., Choi, D. S., Kwon, Y. B. and Kwon, J. (2011) Antiinflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction. Food Chem. Toxicol. 49, 2734-2740. https://doi.org/10.1016/j.fct.2011.08.012
  36. Shim, S., Kim, S., Kwon, Y. B. and Kwon, J. (2012) Protection by [6]-shogaol against lipopolysaccharide-induced toxicity in murine astrocytes is related to production of brain-derived neurotrophic factor. Food Chem. Toxicol. 50, 597-602. https://doi.org/10.1016/j.fct.2011.11.042
  37. Steinman, L. (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299-302. https://doi.org/10.1016/S0092-8674(00)81107-1
  38. Surh, Y. J. and Lee, S. S. (1992) Enzymatic reduction of shogaol: a novel biotransformation pathway for the alpha,beta-unsaturated ketone system. Biochem. Int. 27, 179-187.
  39. Surh, Y. J. and Lee, S. S. (1994) Enzymatic reduction of xenobiotic alpha,beta-unsaturated ketones: formation of allyl alcohol metabolites from shogaol and dehydroparadol. Res. Commun. Chem. Pathol. Pharmacol. 84, 53-61.
  40. Tani, M., Glabinski, A. R., Tuohy, V. K., Stoler, M. H., Estes, M. L. and Ransohoff, R. M. (1996) In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am. J. Pathol. 148, 889-896.
  41. Torkildsen, O., Myhr, K. M. and Bo, L. (2016) Disease-modifying treatments for multiple sclerosis - a review of approved medications. Eur. J. Neurol. 23 Suppl 1, 18-27. https://doi.org/10.1111/ene.12883
  42. Wang, D., Ayers, M. M., Catmull, D. V., Hazelwood, L. J., Bernard, C. C. and Orian, J. M. (2005) Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 51, 235-240. https://doi.org/10.1002/glia.20199
  43. Wattanathorn, J., Jittiwat, J., Tongun, T., Muchimapura, S. and Ingkaninan, K. (2011) Zingiber officinale mitigates brain damage and improves memory impairment in focal cerebral ischemic rat. Evid. Based Complement. Alternat. Med. 2011, 429505.
  44. Wohlmuth, H., Leach, D. N., Smith, M. K. and Myers, S. P. (2005) Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). J. Agric. Food Chem. 53, 5772-5778. https://doi.org/10.1021/jf050435b
  45. Zeng, G. F., Zhang, Z. Y., Lu, L., Xiao, D. Q., Zong, S. H. and He, J. M. (2013) Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res. 16, 124-133. https://doi.org/10.1089/rej.2012.1389

피인용 문헌

  1. Pungent and volatile constituents of dried Australian ginger vol.4, 2019, https://doi.org/10.1016/j.crfs.2021.08.010
  2. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications vol.12, 2021, https://doi.org/10.3389/fphar.2021.779352
  3. Potential of N-trans feruloyl tyramine from Lycium barbarum fruit extract on neurogenesis and neurotrophins; targeting TrkA/ERK/CREB signaling pathway vol.80, 2019, https://doi.org/10.1016/j.jff.2021.104432
  4. Protective Effects of 6-Shogaol, an Active Compound of Ginger, in a Murine Model of Cisplatin-Induced Acute Kidney Injury vol.26, pp.19, 2019, https://doi.org/10.3390/molecules26195931
  5. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats vol.21, pp.1, 2019, https://doi.org/10.1186/s12906-021-03203-7
  6. A hybrid systems biology and systems pharmacology investigation of Zingerone’s effects on reconstructed human epidermal tissues vol.22, pp.1, 2019, https://doi.org/10.1186/s43042-021-00204-6