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STRONG INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5)
FUNCTION BETWEEN TWO COMPARABLE
REAL-VALUED FUNCTIONS

MAJID MIRMIRAN ®* AND BINESH NADERI P

ABSTRACT. Necessary and sufficient conditions in terms of lower cut sets are given
for the strong insertion of a Baire-.5 function between two comparable real-valued
functions on the topological spaces that F, —kernel of sets are Fi, —sets.

1. INTRODUCTION

A generalized class of closed sets was considered by Maki in 1986 [18]. He in-
vestigated the sets that can be represented as union of closed sets and called them
V —sets. Complements of V —sets, i.e., sets that are intersection of open sets are
called A—sets [18].

Recall that a real-valued function f defined on a topological space X is called
A—continuous [23] if the preimage of every open subset of R belongs to A, where A
is a collection of subsets of X. Most of the definitions of function used throughout
this paper are consequences of the definition of A—continuity. However, for unknown
concepts the reader may refer to [5, 11]. In the recent literature many topologists had
focused their research in the direction of investigating different types of generalized
continuity.

J. Dontchev in [6] introduced a new class of mappings called contra-continuity. A
good number of researchers have also initiated different types of contra-continuous
like mappings in the papers [1, 4, 8, 9, 10, 12, 13, 22].
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Results of Katétov [14, 15] concerning binary relations and the concept of an
indefinite lower cut set for a real-valued function, which is due to Brooks [3], are
used in order to give a necessary and sufficient condition for the insertion of a Baire-
.5 function between two comparable real-valued functions on the topological spaces
that F,—kernel of sets are F,—sets.

A real-valued function f defined on a topological space X is called contra-Baire-1
(Baire-.5) if the preimage of every open subset of R is a Gs—set in X [24].

If g and f are real-valued functions defined on a space X, we write g < f in case
g(x) < f(z) for all z in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is
a B —.5b—property provided that any constant function has property P and provided
that the sum of a function with property P and any Baire-.5 function also has
property P. If P, and P, are B — .5—properties, the following terminology is used:
(i) A space X has the weak B — .5—insertion property for (Py, Py) if and only if for
any functions ¢ and f on X such that g < f, g has property P; and f has property
Py, then there exists a Baire-.5 function h such that ¢ < h < f. (ii) A space X has
the strong B — .5—insertion property for (Py, P2) if and only if for any functions g
and f on X such that g < f, g has property P; and f has property P», then there
exists a Baire-.5 function h such that ¢ < h < f and such that if g(z) < f(z) for
any x in X, then g(z) < h(z) < f(x).

In this paper, for a topological space that F,—kernel of sets are F,—sets, a
sufficient condition for the weak B —.5—insertion property is given. Also for a space
with the weak B —.5—insertion property, we give necessary and sufficient conditions
for the space to have the strong B—.5—insertion property. Several insertion theorems

are obtained as corollaries of these results.

2. THE MAIN RESULT AND APPLICATIONS

Before giving a sufficient condition for insertability of a Baire-.5 function, the

necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, 7). We define the
subsets A and AV as follows:

AMN=n{0:0DA,0¢c (X,r)}and AV =U{F:F C A F°c (X,7)}.

In [7, 17, 21], AN is called the kernel of A.
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We define the subsets G5(A) and F,(A) as follows:
Gs(A) =U{O : O C A,OisGs — set} and
F,(A)=n{F : F D A, FisF, — set}.

Fy(A) is called the F, — kernel of A.

The following first two definitions are modifications of conditions considered in
14, 15].

Definition 2.2. If p is a binary relation in a set S then p is defined as follows: x p y

if and only if y p v implies = p v and u p x implies v p y for any v and v in S.

Definition 2.3. A binary relation p in the power set P(X) of a topological space
X is called a strong binary relation in P(X) in case p satisfies each of the following
conditions:

1) If A; p Bj for any i € {1,...,m} and for any j € {1,...,n}, then there exists
a set C'in P(X) such that A; p C and C p Bj for any ¢ € {1,...,m} and any
jed{l,...,n}.

9) If AC B, then A 5 B.

3) If A p B, then F,(A) C B and A C Gs(B). The concept of a lower indefinite

cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if {x € X :
flz) < €} C A(f,0) C{z € X : f(z) < £} for a real number ¢, then A(f,¢) is a
lower indefinite cut set in the domain of f at the level /.

We now give the following main results:

Theorem 2.1. Let g and [ be real-valued functions on the topological space X,
that F,—kernel sets in X are F,— sets , with g < f. If there exists a strong binary
relation p on the power set of X and if there exist lower indefinite cut sets A(f,t)
and A(g,t) in the domain of f and g at the level t for each rational number t such
that if t1 < ta then A(f,t1) p A(g,t2), then there exists a Baire-.5 function h defined
on X such that g < h < f.

Proof. Let g and f be real-valued functions defined on the X such that ¢ < f. By
hypothesis there exists a strong binary relation p on the power set of X and there
exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the
level t for each rational number ¢ such that if ¢; < to then A(f,t1) p A(g,t2).
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Define functions F' and G mapping the rational numbers QQ into the power set of X
by F(t) = A(f,t) and G(t) = A(g,t). If t; and t2 are any elements of Q with ¢; < ta,
then F(t1) p F(t2),G(t1) p G(t2), and F(t1) p G(t2). By [15,Lemmas 1 and 2] it
follows that there exists a function H mapping Q into the power set of X such that
if t; and ¢y are any rational numbers with ¢; < ta, then F'(t1) p H(t2), H(t1) p H(t2)
and H(t1) p G(t2).

For any = in X, let h(z) =inf{t € Q : x € H(t)}.

We first verify that ¢ < h < f: If z is in H(¢) then z is in G(t') for any ¢’ > ¢;
since z in G(t') = A(g,t') implies that g(x) < ¢, it follows that g(z) < ¢. Hence
g < h. If z is not in H(t), then z is not in F(¢') for any ¢ < ¢; since z is not in
F(t") = A(f,t') implies that f(x) > ¢, it follows that f(z) > t. Hence h < f.

Also, for any rational numbers ¢; and to with t; < to, we have h™l(t1,t2) =
Gs(H(t2)) \ Fy(H(t1)). Hence h1(t1,t2) is a Gs—set in X, i.e., h is a Baire-.5

function on X. OJ

The above proof used the technique of [14, Theorem 1].

Definition 2.5. A real-valued function f defined on a space X is called contra-upper
semi-Baire-.5 (resp. contra-lower semi-Baire-.5) if f~!(—o0,t) (resp. f~1(t,+0c0))
is a Gg—set for any real number ¢.

The abbreviations usc, lsc, cusB.5 and clsB.5 are used for upper semicontinuous,

lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5,

respectively.

Remark 1 ([14, 15]). A space X has the weak c—insertion property for (usc,lsc)

if and only if X is normal.

Before stating the consequences, we suppose that X is a topological space that

F,—kernel of sets are F,—sets.

Corollary 2.1. For each pair of disjoint Fy—sets Iy, Fa, there are two Gs—sets Gy
and Gy such that Fy C G1, F» C Gy and G1 NGy = 0 if and only if X has the weak
B — .5—insertion property for (cusB — .5,clsB — .5).

Proof. Let g and f be real-valued functions defined on the X, such that f is IsBi, g
is usBy, and g < f.If a binary relation p is defined by A p B in case F,(A) C G5(B),
then by hypothesis p is a strong binary relation in the power set of X. If ¢; and to
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are any elements of Q with ¢; < to, then
A(fit1) C{z e X : f(x) <t} C{z € X : g(x) < t2} C A(g, t2);

since {v € X : f(z) < t1} is a Fy—set and since {r € X : g(z) < t2} is a
Gs—set, it follows that F,(A(f,t1)) C Gs(A(g,t2)). Hence t; < to implies that
A(f,t1) p A(g,t2). The proof follows from Theorem 2.1.

On the other hand, let F1 and F» be disjoint F,,—sets. Set f = xpe and g = xp,,
then fis clsB —.5,¢ is cusB — .5, and g < f. Thus there exists Baire-.5 function h
such that g <h < f. Set G1 = {z € X : h(z) < 3} and G2 = {z € X : h(z) > 3},
then GG; and G5 are disjoint Gs—sets such that F; C G1 and F> C Gbs. O

Remark 2 ([25]). A space X has the weak c—insertion property for (Isc,usc) if and

only if X is extremally disconnected.

Corollary 2.2. For every G of Gs—set, F,(G) is a Gs—set if and only if X has the
weak B — .5—insertion property for (clsB — .5, cusB — .5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 2.1. The following conditions on the space X are equivalent:
(i) For every G of Gs—set we have F,(G) is a G5—set.
(i1) For each pair of disjoint Gs—sets as G1 and Gy we have F,(G1)NF,(G2) = 0.

The proof of Lemma 2.1 is a direct consequence of the definition F,—kernel of
sets.

We now give the proof of Corollary 2.2.

Proof. Let g and f be real-valued functions defined on the X, such that f is clsB —
.5,g is cusB — .5, and f < ¢.If a binary relation p is defined by A p B in case
F,(A) C G C F,(G) C G4(B) for some Gs—set g in X, then by hypothesis and
Lemma 2.1 p is a strong binary relation in the power set of X. If ¢; and ¢y are any
elements of Q with ¢; < t9, then

Algity) ={z e X :g(z) <t1} S{z e X: f(z) <o}

= A(f t2);
since {z € X : g(x) < t1} is a Gs—set and since {x € X : f(z) < t2} is a F,—set, by
hypothesis it follows that A(g,t1) p A(f,t2). The proof follows from Theorem 2.1.
On the other hand, let G and G2 be disjoint Gs—sets. Set f = xa, and g = x¢s,
then f is clsB — .5,¢g is cusB — .5, and f < g.
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Thus there exists Baire-.5 function h such that f < h < g. Set F} = {x € X :
h(z) < +} and F» = {2 € X : h(z) > 2/3} then F} and Fj are disjoint F,—sets such
that G; C F; and G2 C F5. Hence Fg(Fl) N FO—(FQ) = 0. OJ

If a space has the strong B — .5-insertion property for (Pp, P»), then it has the
weak B — .5-insertion property for (P;, P»).The following result uses lower cut sets
and gives a necessary and sufficient condition for a space satisfies that weak B — .5-

insertion property to satisfy the strong B — .5-insertion property.

Theorem 2.2. Let P, and Py be B— .5—property and X be a space that satisfies the
weak B — .5—insertion property for (Py, Py). Also assume that g and f are functions
on X such that g < f,g has property Py and f has property Po. The space X has
the strong B — .5—insertion property for (Pi, Py) if and only if there exist lower cut
sets A(f — g,2™™) and there exists a sequence {F,} of subsets of X such that (i)
for each n, F,, and A(f —g,2™") are completely separated by Baire-.5 functions, and

(iif{z € X : (f —g)(x) > 0} = Uy Fa
Proof. [20, Theorem 3.1]. O

Theorem 2.3. Let P; and P» be B — .5—properties and assume that the space X
satisfied the weak B — .5—insertion property for (Py, Py). The space X satisfies the
strong B — .5—insertion property for (Py, P2) if and only if X satisfies the strong
B — .5—insertion property for (P, B —.5) and for (B — .5, P,).

Proof. [20, Theorem 3.2]. O

Before stating the consequences of Theorem 2.2, we state and prove the necessary

lemmas.

Lemma 2.2. The following conditions on the space X are equivalent:

(i) Every two disjoint F,—sets of X can be separated by Gs—sets of X.

(ii) If F is a Fy—set of X which is contained in a Gs—set G, then there exists a
Gs—set H such that F C H C F,(H) C G.

Proof. (i) = (ii) Suppose that F' C G, where F and G are F,—set and Gs—set of
X, respectively. Hence, G° is a F,—set and F N G° = ).

By (i) there exist two disjoint Gs—sets G1, G4 such that FF C G and G¢ C Gs.
But

G°C Gy = GS CG,
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and
GiNGy=0= G, CG5
hence
FCG CG5C@
and since G§ is a F,—set containing G; we conclude that F,,(G1) C G§, i.e.,
FCG) CF,(Gy) CG.
By setting H = G'1, condition (ii) holds.
(ii) = (i) Suppose that F7, F5 be two disjoint F,—sets of X.
This implies that F; C Fy and Fy is a Gs—set. Hence by (ii) there exists a
Gs—set H such that, F; C H C F,(H) C Fy.
But
H C F,(H) = H N (F,(H))" =0
and
Fy(H) € F§ = Fy C (F,(H))".
Furthermore, (F,(H))¢ is a Gs—set of X. Hence F; C H,F» C (F,(H))® and
HnN(F;(H))¢ = 0. This means that condition (i) holds. O

Lemma 2.3. Suppose that X is a topological space such that we can separate every
two disjoint Fy—sets by Gs—sets. If F1 and Fs be two disjoint Fy—sets of X, then
there exists a Baire-.5 function h : X — [0,1] such that h(Fy) = {0} and h(F3) =
{1}.

Proof. Suppose F; and F» be two disjoint F,—sets of X. Since FiNFy =), F} C F¥.
In particular, since Fy is a Gs—set of X containing F, by Lemma 2.2, there exists
a Gs—set Hyy such that,

Py C Hyjp C Fy(Hypp) CFy.

Note that Hyp is a Gs—set and contains Fi, and Fy is a Gs—set and contains
F,(Hy3). Hence, by Lemma 2.2, there exist Gs—sets H,,, and Hj/, such that,

Fy C Hyyy C Fy(Hyyy) C Hyyjp C Fo(Hyyp) C Hyyy C Fo(Hsyy) C F.

By continuing this method for every ¢t € D, where D C [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain Gs—sets H; with
the property that if ¢;,t3 € D and ¢; < t9, then Hy, C H;,. We define the function
h on X by h(x) = inf{t: z € H;} for © ¢ F5 and h(x) =1 for x € Fy.
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Note that for every z € X,0 < h(xz) < 1, i.e., h maps X into [0,1]. Also, we
note that for any ¢t € D, F; C Hy; hence h(Fy) = {0}. Furthermore, by definition,
h(Fy) = {1}. It remains only to prove that h is a Baire-.5 function on X. For
every a € R, we have if @ < 0 then {z € X : h(z) < a} = 0 and if 0 < « then
{z € X : h(z) < a} = U{H; : t < a}, hence, they are Gs—sets of X. Similarly, if
a < 0 then {vr € X : h(z) > a} = X and if 0 < « then {z € X : h(z) > a} =
U{(F,(H))¢ : t > a} hence, every of them is a Gs—set. Consequently h is a Baire-.5

function. OJ

Lemma 2.4. Suppose that X is a topological space such that we can separate every
two disjoint F,—sets by Gs—sets. If F1 and Fy are two disjoint Fy—sets of X and
FYy is a countable intersection of Gs—sets, then there exists a Baire-.5 function h on
X into [0,1] such that h=1(0) = Fy and h(Fy) = {1}.

Proof. Suppose that F| = (2| Gy, where Gy, is a Gs—set of X. We can suppose
that G, N F, = (), otherwise we can substitute G,, by G, \ F». By Lemma 2.3,
for every n € N, there exists a Baire-.5 function h, on X into [0,1] such that
hyn(F1) = {0} and h,(X \ Gp) = {1}. We set h(z) = 7712 "hy(x).

Since the above series is uniformly convergent, it follows that h is a Baire-.5
function from X to [0, 1]. Since for every n € N, F5 C X \ Gy, therefore h, (Fs) = {1}
and consequently h(Fy) = {1}. Since hy(F1) = {0}, h(F1) = {0}. It suffices to show
that if x ¢ Fi, then h(x) # 0.

Now if z ¢ Fi, since Fy = (,_; Gp, there exists ng € N such that & G, hence
hno(x) = 1, i.e., h(x) > 0. Therefore h=1(0) = F. O

Lemma 2.5. Suppose that X is a topological space such that we can separate every
two disjoint F,—sets by Gs—sets. The following conditions are equivalent:

(i) For every two disjoint Fy—sets Fy and Fy, there exists a Baire-.5 function h
on X into [0,1] such that h=*(0) = Fy and h™1(1) = F.

(ii) Every F,—set is a countable intersection of Gs—set.

(iii) Every Gs—set is a countable union of Fy—set.

Proof. (i) = (ii). Suppose that F' is a F,—sets. Since () is a F,—set, by (i) there
exists a Baire-.5 function h on X into [0,1] such that h=1(0) = F. Set G,, = {z €
X : h(z) < L}, Then for every n € N, G, is a Gs—set and (), G, = {z € X :
h(z) =0} = F.
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(ii) = (i). Suppose that F; and F» are two disjoint F,,—sets. By Lemma 2.4, there
exists a Baire-.5 function f on X into [0, 1] such that f~1(0) = F} and f(Fy) = {1}.
Set G={zeX:fla)<i}, F={zeX:flx)=3},and H={z € X : f(z) >
3}. Then GUF and H U F are two F,—sets and (GU F) N F, = (). By Lemma
2.4, there exists a Baire-.5 function g on X into [3,1] such that ¢~!(1) = F» and
g(GUF) = {}}. Define h by h(z) = f(z) for x € GUF, and h(z) = g(z) for
x € HUF.h is well-defined and a Baire-.5 function, since (GUF)N(HUF) = F and
for every « € F we have f(z) = g(z) = 4. Furthermore, (GUF)U(HUF) = X, hence
h defined on X and maps to [0, 1]. Also, we have h=1(0) = Fy and h=1(1) = Fy.

(ii) < (iii) By De Morgan law and noting that the complement of every F,—set is

a Gs—set and complement of every Gs—set is a F,—set, the equivalence is holds. [

Remark 3 ([19]). A space X has the strong c—insertion property for (usc,lsc) if

and only if X is perfectly normal.

Corollary 2.3. For every two disjoint F,—sets Fy and Fs, there exists a Baire-.5
function h on X into [0,1] such that h=1(0) = Fy and h=1(1) = F; if and only if X
has the strong B — .5—insertion property for (cusB — .5,clsB — .5).

Proof. Since for every two disjoint F,—sets F} and Fb, there exists a Baire-.5 function
h on X into [0, 1] such that h=1(0) = Fy and h~1(1) = F, define G; = {z € X :
h(z) < %} and Gy = {x € X : h(z) > %} Then G; and G2 are two disjoint
Gs—sets that contain F; and Fb, respectively. This means that, we can separate
every two disjoint F,—sets by Gs—sets. Hence by Corollary 2.1, X has the weak
B — .5—insertion property for (cusB — .5,clsB — .5). Now, assume that g and f
are functions on X such that g < f,g is cusB — .5 and f is clsB — .5. Since f — g
is clsB — .5, the lower cut set A(f —¢,27") = {z € X : (f —g)(x) < 27"} is
a F,—set. By Lemma 2.5, we can choose a sequence {F,} of F,—sets such that
{x e X :(f—9g)(x) >0} =U,2, Fn and for every n € N, F,, and A(f —g,27")
are disjoint. By Lemma 2.3, F,, and A(f — ¢,27") can be completely separated
by Baire-.5 functions. Hence by Theorem 2.2, X has the strong B — .5—insertion
property for (cusB — .5,clsB — .5).

On the other hand, suppose that F; and F5 be two disjoint F,—sets. Since
FiNF, =0, F, CFf. Set g = xp, and f = xpe. Then f is clsB — .5 and g is
cusB—.5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function h on
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X such that ¢ < h < f and whenever g(z) < f(x) we have g(z) < h(z) < f(z). By
definitions of f and g, we have h=1(1) = FoNFf = F, and h~1(0) = FiNFS = F. O

Remark 4 ([2]). A space X has the strong c—insertion property for (Isc,usc) if

and only if each open subset of X is closed.

Corollary 2.4. Fvery Gs—set is a Fy—set if and only if X has the strong B —
.5—insertion property for (clsB — .5,cusB — .5).

Proof. By hypothesis, for every G of Gs—set, we have F,(G) = G is a Gs—set. Hence
by Corollary 2.2, X has the weak B—.5—insertion property for (clsB—.5,cusB—.5).
Now, assume that g and f are functions on X such that g < f, g is clsB — .5 and
fisB—.5. Set A(f—g,27")={x € X : (f —g)(z) <27 "}. Then, since f — g is
cusB — .5, we can say that A(f —¢,27") is a Gg—set. By hypothesis, A(f —g,27")
is a F,—set. Set G,, = X\ A(f —g¢,27™). Then G,, is a Gs—set. This means that G,
and A(f —g,2™") are disjoint Gs—sets and also are two disjoint F,—sets. Therefore
Gy and A(f — ¢g,27 ™) can be completely separated by Baire-.5 functions. Now, we
have ;" Gn = {z € X : (f — g)(z) > 0}. By Theorem 2.2, X has the strong
B — .5—insertion property for (clsB —.5, B—.5). By an analogous argument, we can
prove that X has the strong B —.5—insertion property for (B—.5, cusB—.5). Hence,
by Theorem 2.3, X has the strong B—.5—insertion property for (clsB—.5, cusB—.5).

On the other hand, suppose that X has the strong B — .5—insertion property
for (clsB — .5,cusB — .5). Also, suppose that G is a Gg—set. Set f = 1 and
g =Xgqg- Then f is cusB — .5,¢g is cIlsB — .5 and g < f. By hypothesis, there exists
a Baire-.5 function h on X such that ¢ < h < f and whenever g(z) < f(z), we
have g(z) < h(z) < f(x). It is clear that h(G) = {1} and for x € X \ G we have
0 < h(xz) < 1. Since h is a Baire-.5 function, {x € X : h(z) > 1} = G is a F,—set,
ie., Gis a F,—set. U
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