DOI QR코드

DOI QR Code

An adaptive approach for the chloride diffusivity of cement-based materials

  • Tran, Bao-Viet (Construction Engineering Faculty, Research and Application Center for Technology in Civil Engineering, University of Transport and Communications) ;
  • Pham, Duc-Chinh (Institute of Mechanics) ;
  • Loc, Mai-Dinh (Construction Engineering Faculty, Research and Application Center for Technology in Civil Engineering, University of Transport and Communications) ;
  • Le, Minh-Cuong (Construction Engineering Faculty, Research and Application Center for Technology in Civil Engineering, University of Transport and Communications)
  • Received : 2018.04.15
  • Accepted : 2019.02.24
  • Published : 2019.03.25

Abstract

Adaptive schemes are constructed in this paper for modeling the effective chloride diffusion coefficient of cement-based materials (paste and concrete). Based on the polarization approximations for the effective conductivity of isotropic multicomponent materials, we develop some fitting procedures to include more information about the materials, to improve the accuracy of the scheme. The variable reference parameter of the approximation involves a few free scalars, which are determined through the available numerical or experimental values of the macroscopic chloride diffusion coefficient of cement paste or concrete at some volume proportions of the component materials. The various factors that affect the chloride diffusivity of cement-based material (porous material structure, uncertainty of value of the chloride diffusion coefficient in water-saturated pore spaces, etc.) may be accounted to make the predictions more accurate. Illustrations of applications are provided in a number of examples to show the usefulness of the approach.

Keywords

Acknowledgement

Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

References

  1. Care, S. and Herve, E. (2004), "Application of a n-phase model to the diffusion coefficient of chloride in mortar", Tran. Porous Media, 56(2), 119-135. https://doi.org/10.1023/B:TIPM.0000021730.34756.40
  2. Carrara, P., De Lorenzis, L. and Bentz, D. (2016), "Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects", Model. Simul. Mater. Sci. Eng., 24(6), 065009. https://doi.org/10.1088/0965-0393/24/6/065009
  3. CEA (2011), Presentation et Utilisation de Cast3m, http://www.cast3m.cea.fr.
  4. Christensen, R. (1979), Mechanics of Composite Materials, Mineola, Dover, NY.
  5. Christensen, R. and Lo, K. (1979), "Solutions for effective shear properties in three phase sphere and cylinder models", J. Mech. Phys. Solid., 27(4), 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
  6. Constantinides, G. and Ulm, F.J. (2004), "The effect of two types of csh on the elasticity of cementbased materials: Results from nanoindentation and micromechanical modeling", Cement Concrete Res., 34(1), 67-80. https://doi.org/10.1016/S0008-8846(03)00230-8
  7. Dormieux, L. and Lemarchand, E. (2001), "Homogenization approach of advection and diffusion in cracked porous material", J. Eng. Mech., 127(12), 1267-1274. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1267)
  8. Dormieux, L., Kondo, D. and Ulm, F.J. (2006), Microporomechanics, John Wiley & Sons.
  9. Dridi, W. (2013), "Analysis of effective diffusivity of cementbased materials by multi-scale modelling", Mater. Struct., 46(1-2), 313-326. https://doi.org/10.1617/s11527-012-9903-5
  10. Ehlen, M.A., Thomas, M.D. and Bentz, E.C. (2009), "Life-365 service life prediction modeltm version 2.0", Concrete Int., 31(5), 41-46.
  11. EuRam, III, E. (2000), "Duracrete final technical report, probabilistic performance based durability design of concrete structures", Technical Report, Document, BE95-1347.
  12. Hashin, Z. and Shtrikman, S. (1962), "A variational approach to the theory of the effective magnetic permeability of multiphase materials", J. Appl. Phys., 33(10), 3125-3131. https://doi.org/10.1063/1.1728579
  13. Herve, E. and Zaoui, A. (1990), "Modelling the effective behavior of nonlinear matrix-inclusion composites", Eur. J. Mech., A. Solid., 9(6), 505-515.
  14. Herve, E. and Zaoui, A. (1993), "N-layered inclusion-based micromechanical modelling", Int. J. Eng. Sci., 31(1), 1-10. https://doi.org/10.1016/0020-7225(93)90059-4
  15. Hirao, H., Yamada, K., Takahashi, H. and Zibara, H. (2005), "Chloride binding of cement estimated by binding isotherms of hydrates", J. Adv. Concrete Technol., 3(1), 77-84. https://doi.org/10.3151/jact.3.77
  16. Hu, Z., Mao, L.X., Xia, J., Liu, J.B., Gao, J., Yang, J. and Liu, Q.F. (2017), "Five-phase modelling for effective diffusion coefficient of chlorides in recycled concrete", Mag. Concrete Res., 1-12.
  17. Le, K.C. and Pham, D.C. (1991), "On bounding the effective conductivity of isotropic composite materials", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 42(4), 614-622. https://doi.org/10.1007/BF00946180
  18. Lemarchand, E. (2001), "Contribution de la Micromecanique a l'etude des phenomenes de transport et de couplage poromecanique dans les milieux poreux: Application aux phenomenes de gonflement des geomateriaux", PhD Thesis, Ecole des Ponts ParisTech.
  19. Liu, L., Sun, W., Ye, G., Chen, H. and Qian, Z. (2012), "Estimation of the ionic diffusivity of virtual cement paste by random walk algorithm", Constr. Build. Mater., 28(1), 405-413. https://doi.org/10.1016/j.conbuildmat.2011.08.077
  20. Liu, Q.F., Easterbrook, D., Li, L.Y. and Li, D. (2016), "Prediction of chloride diffusion coefficients using multi-phase models", Mag. Concrete Res., 69(3), 134-144. https://doi.org/10.1680/jmacr.16.00134
  21. Ma, H., Hou, D. and Li, Z. (2015), "Two-scale modeling of transport properties of cement paste: Formation factor, electrical conductivity and chloride diffusivity", Comput. Mater. Sci., 110, 270-280. https://doi.org/10.1016/j.commatsci.2015.08.048
  22. MacDonald, K.A. and Northwood, D.O. (1995), "Experimental measurements of chloride ion diffusion rates using a twocompartment diffusion cell: effects of material and test variables", Cement Concrete Res., 25(7), 1407-1416. https://doi.org/10.1016/0008-8846(95)00135-Y
  23. Markov, M., Levin, V., Mousatov, A. and Kazatchenko, E. (2012), "Generalized dem model for the effective conductivity of a twodimensional percolating medium", Int. J. Eng. Sci., 58, 78-84. https://doi.org/10.1016/j.ijengsci.2012.03.026
  24. Martin-Perez, B., Zibara, H., Hooton, R. and Thomas, M. (2000), "A study of the effect of chloride binding on service life predictions", Cement Concrete Res., 30(8), 1215-1223. https://doi.org/10.1016/S0008-8846(00)00339-2
  25. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  26. Mura, T. (1982), Micromechanics of Defects in Solids, Martinus Nijhoff.
  27. Ngala, V. and Page, C. (1997), "Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes", Cement Concrete Res., 27(7), 995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  28. Ngala, V., Page, C., Parrott, L. and Yu, S. (1995), "Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes", Cement Concrete Res., 25(4), 819-826. https://doi.org/10.1016/0008-8846(95)00072-K
  29. Nguyen, S.T., Pham, D.C., Vu, M.N. and To, Q.D. (2016), "On the effective transport properties of heterogeneous materials", Int. J. Eng. Sci., 104, 75-86. https://doi.org/10.1016/j.ijengsci.2016.04.001
  30. Nguyen, S.T., Tran-Le, A.D., Vu, M.N., To, Q.D., Douzane, O. and Langlet, T. (2016), "Modeling thermal conductivity of hemp insulation material: a multi-scale homogenization approach", Build. Environ., 107, 127-134. https://doi.org/10.1016/j.buildenv.2016.07.026
  31. Page, C., Short, N. and El Tarras, A. (1981), "Diffusion of chloride ions in hardened cement pastes", Cement Concrete Res., 11(3), 395-406. https://doi.org/10.1016/0008-8846(81)90111-3
  32. Park, S.S., Kwon, S.J. and Jung, S.H. (2012), "Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation", Constr. Build. Mater., 29, 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  33. Pham, D.C. (1996), "Conductivity of disordered polycrystals", J. Appl. Phys., 80(4), 2253-2259. https://doi.org/10.1063/1.363053
  34. Pham, D.C. (2008), "Weighted effective medium approximations for conductivity of random composites", Int. J. Heat Mass Transf., 51(13), 3355-3361. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.035
  35. Pham, D.C. (2011), "Bounds on the effective conductivity of statistically isotropic multicomponent materials and random cell polycrystals", J. Mech. Phys. Solid., 59(3), 497-510. https://doi.org/10.1016/j.jmps.2011.01.006
  36. Pham, D.C. and Nguyen, T.K. (2015), "Polarization approximations for macroscopic conductivity of isotropic multicomponent materials", Int. J. Eng. Sci., 97, 26-39. https://doi.org/10.1016/j.ijengsci.2015.08.006
  37. Pham, D.C. and Torquato, S. (2005), "Exactly realizable bounds on the trapping constant and permeability of porous media", J. Appl. Phys., 97(1), 013535. https://doi.org/10.1063/1.1829379
  38. Pham, D.C. and Tran, B.V. (2014), "Equivalent-inclusion approach and effective medium approximations for conductivity of coated-inclusion composites", Eur. J. Mech., A/Solid., 47, 341-348. https://doi.org/10.1016/j.euromechsol.2014.05.010
  39. Pham, D.C., Vu, L.D. and Nguyen, V.L. (2013), "Bounds on the ranges of the conductive and elastic properties of randomly inhomogeneous materials", Philos. Mag., 93(18), 2229-2249. https://doi.org/10.1080/14786435.2013.765992
  40. Phan-Thien, N. and Pham, D.C. (2000), "Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity", Int. J. Eng. Sci., 38(1), 73-88. https://doi.org/10.1016/S0020-7225(99)00016-6
  41. Pivonka, P., Hellmich, C. and Smith, D. (2004), "Microscopic effects on chloride diffusivity of cement pastes a scaletransition analysis", Cement Concrete Res., 34(12), 2251-2260. https://doi.org/10.1016/j.cemconres.2004.04.010
  42. Stora, E., Bary, B. and He, Q.C. (2008), "On estimating the effective diffusive properties of hardened cement pastes", Tran. Porous Media, 73(3), 279-295. https://doi.org/10.1007/s11242-007-9170-z
  43. Sun, G., Zhang, Y., Sun, W., Liu, Z. and Wang, C. (2011), "Multiscale prediction of the effective chloride diffusion coefficient of concrete", Constr. Build. Mater., 25(10), 3820-3831. https://doi.org/10.1016/j.conbuildmat.2011.03.041
  44. Tang, L. and Nilsson, L.O. (1993), "Rapid determination of the chloride diffusivity in concrete by applying an electric field", Mater. J., 89(1), 49-53.
  45. Torquato, S. (2002), Random Heterogeneous Materials. Interdisciplinary Applied Mathematics, Vol. 10, Springer-Verlag, New York.
  46. Torquato, S. and Pham, D.C. (2004), "Optimal bounds on the trapping constant and permeability of porous media", Phys. Rev. Lett., 92(25), 255505. https://doi.org/10.1103/PhysRevLett.92.255505
  47. Tran, A.B., Vu, M.N., Nguyen, S.T., To, Q.D. and Le-Nguyen, K. (2018), "Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media", J. Appl. Geophys., 149, 35-41. https://doi.org/10.1016/j.jappgeo.2017.12.012
  48. Tran, B.V., Pham, D.C. and Nguyen, T.H.G. (2015), "Equivalentinclusion approach and effective medium approximations for elastic moduli of compound-inclusion composites", Arch. Appl Mech., 85(12), 1983-1995. https://doi.org/10.1007/s00419-015-1031-6
  49. Tu, X., Li, Z., Chen, A. and Pan, Z. (2018), "A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model", Comput. Concrete, 21(4), 471-484. https://doi.org/10.12989/CAC.2018.21.4.471
  50. Xi, Y. and Bazant, Z.P. (1999), "Modeling chloride penetration in saturated concrete", J. Mater. Civil Eng., 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
  51. Yang, C. and Su, J. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
  52. Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
  53. Yu, S. and Page, C. (1991), "Diffusion in cementitious materials: I. comparative study of chloride and oxygen diffusion in hydrated cement pastes", Cement Concrete Res., 21(4), 581-588. https://doi.org/10.1016/0008-8846(91)90109-U
  54. Zheng, J. and Zhou, X. (2008), "Analytical solution for the chloride diffusivity of hardened cement paste", J. Mater. Civil Eng., 20(5), 384-391. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(384)
  55. Zheng, J., Zhou, X. and Wu, Z. (2010), "A simple method for predicting the chloride diffusivity of cement paste", Mater. Struct., 43(1-2), 99-106. https://doi.org/10.1617/s11527-009-9473-3
  56. Zheng, J.J. and Zhou, X.Z. (2013), "Effective medium method for predicting the chloride diffusivity in concrete with itz percolation effect", Constr. Build. Mater., 47, 1093-1098. https://doi.org/10.1016/j.conbuildmat.2013.05.108