과제정보
연구 과제 주관 기관 : National Science Foundation China
참고문헌
- ANSYS-AUTODYN (2009), "Interactive non-linear dynamic analysis software", Version 16, User's Manual, Century Dynamics Inc.
- ANSYS (2007), Theory Reference Manual, Release 11.0, ANSYS Inc.
- Benson, D.J. (1992), "Computational methods in Lagrangian and Eulerian hydrocode", Comput. Meth. Appl. Mech. Eng., 99, 2356-2394. https://doi.org/10.1016/0045-7825(92)90042-I
- Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, NY, USA.
- Codina, R., Ambrosini, D. and de Borbon, F. (2016), "Experimental and numerical study of a RC member under a close-in blast loading", Eng. Struct., 127, 145-158. https://doi.org/10.1016/j.engstruct.2016.08.035
- CONWEP (1990), Conventional Weapons Effects, Computer Software Produced by the U.S. Army Waterways, Experimental Station, Mississippi, USA.
- Gebbeken, N. and Ruppert, M. (2000), "A new material model for concrete in high-dynamic hydrocode simulations", Arch. Appl. Mech., 70, 463-478. https://doi.org/10.1007/s004190000079
- Govindjee, S., Gregory, J.K. and Simo, J.C. (1995), "Anisotropic modeling and numerical-simulation of brittle damage in concrete", Int. J. Numer. Meth. Eng., 38, 3611-3633. https://doi.org/10.1002/nme.1620382105
- Hentz, S., Donze, F.V. and Daudeville, L. (2004), "Discrete element modelling of concrete submitted to dynamic loading at high strain rates", Comput. Struct., 82, 2509-2524. https://doi.org/10.1016/j.compstruc.2004.05.016
- Herrmann, W. (1969), "Constitutive equation for the dynamic compaction of ductile porous materials", J. Appl. Phys., 40, 2490-2499. https://doi.org/10.1063/1.1658021
- Hu, G., Wu, J. and Li, L. (2016), "Advanced concrete model in hydrocode to simulate concrete structures under blast loading", Adv. Civil Eng., 2016, 1-13.
- Li, X., Miao, C., Wang, Q. and Geng, Z. (2016), "Antiknock performance of interlayered high-damping-rubber blast door under thermobaric shock wave", Shock Vib., 2016, Article ID 2420893, 9.
- Lu, X. and Hsu, C.T.T. (2007), "Stress-strain relations of highstrength concrete under triaxial compression", J. Mater. Civil Eng., 19(3), 261-8. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(261)
- Luccioni, B., Araoz, G. and Labanda, N. (2013), "Defining Erosion Limit for Concrete", Int. J. Protect. Struct., 4(3), 315-340. https://doi.org/10.1260/2041-4196.4.3.315
- Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19, 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
- Nystrom, U. and Gylltoft, K. (2009), "Numerical studies of the combined effects of blast and fragment loading", Int. J. Impact Eng., 36(8), 995-1005. https://doi.org/10.1016/j.ijimpeng.2009.02.008
- Nystrom, U. and Gylltoft, K. (2011), "Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete", Int. J. Impact Eng., 38(2), 95-105. https://doi.org/10.1016/j.ijimpeng.2010.10.003
- Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., 27(6), 717-725. https://doi.org/10.12989/SCS.2018.27.6.717
- Rashad, M., Wahab, M.M.A. and Yang, T.Y. (2019), "Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads", Steel Compos. Struct., 30(3), 217-230. https://doi.org/10.12989/SCS.2019.30.3.217
- Riedel, W. (2000), "Beton unter dynamischen Lasten Meso- und makromechanische Modelle und ihre Parameter", Doctoral Thesis, Institut Kurzzeitdynamik, Ernst-Mach-Institut der Bundeswehr Munchen, Freiburg. (in German)
- Riedel, W. (2009), "10 years RHT: A review of concrete modelling and hydrocode applications", Predictive Modeling of Dynamic Processes, Springer, Boston.
- Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes", Proceedings of the 9th International Symposium Interact, Eff. Munitions with Struct., Berlin-Strausberg, May.
- Riedel, W., Wicklein, M. and Thoma, K. (2008), "Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis", Int. J. Impact Eng., 35, 155-171. https://doi.org/10.1016/j.ijimpeng.2007.02.001
- TM5-1300 (1990), Structures to Resist the Effects of Accidental Explosions, Technical Manual, US Department of the Army, Washington DC, USA.
- Tu, Z. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact Eng., 36(1), 132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
- Tu, Z. and Lu, Y. (2010), "Modifications of RHT material model for improved numerical simulation of dynamic response of concrete", Int. J. Impact Eng., 37(10), 1072-1082. https://doi.org/10.1016/j.ijimpeng.2010.04.004
- Wang, G. and Zhang, S. (2014), "Damage prediction of concrete gravity dams subjected to underwater explosion shock loading", Eng. Fail. Anal., 39, 72-91. https://doi.org/10.1016/j.engfailanal.2014.01.018
- Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2013), "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng. Fail. Anal., 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
- Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5-6), 431-438. https://doi.org/10.1016/j.compstruc.2005.09.029
- Zhang, M.H., Sharif, S.H. and Lu, G. (2007), "Impact resistance of high-strength fibre-reinforced concrete", Mag. Concrete Res., 59(3), 199-210. https://doi.org/10.1680/macr.2007.59.3.199
- Zhou, X.Q. and Hao, H. (2008), "Numerical prediction of reinforced concrete exterior wall response to blast loading", Adv. Struct. Eng., 11(4), 355-367. https://doi.org/10.1260/136943308785836826
피인용 문헌
- Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2019, https://doi.org/10.12989/cac.2020.26.6.533