Acknowledgement
Supported by : National Natural Science Foundation of China, China Scholarship Council, Shaanxi National Science Foundation of China
References
- Adair, D. and Jaeger, M. (2017), "Vibration analysis of a uniform pre-twisted rotating Euler-Bernoulli beam using the modified Adomian decomposition method", Math. Mech. Sol., 23(9), 1345-1363. https://doi.org/10.1177/1081286517720843
- ANSYS Inc. (2016), ANSYS Programmer's Guide Release 14.0, 1st Edition, U.S.A.
- Banerjee, J.R. (2001), "Free vibration analysis of a twisted beam using the dynamic stiffness method", Int. J. Sol. Struct., 38(38), 6703-6722. https://doi.org/10.1016/S0020-7683(01)00119-6
- Banerjee, J.R. (2004), "Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam", J. Sound Vibr., 270(1), 379-401. https://doi.org/10.1016/S0022-460X(03)00633-3
- Berdichevskii, V.L. and Starosel'skii, L.A. (1985), "Bending, extension, and torsion of naturally twisted rods", J. Appl. Math. Mech., 49(6), 746-755. https://doi.org/10.1016/0021-8928(85)90012-7
- Chen, C.H., Yao, Y. and Huang, Y. (2014), "Elastic flexural and torsional buckling behavior of pre-twisted bar under axial load", Struct. Eng. Mech., 49(2), 273-283. https://doi.org/10.12989/sem.2014.49.2.273
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "The finite element model research of the pre-twisted thin-walled beam", Struct. Eng. Mech., 57(3), 389-402. https://doi.org/10.12989/sem.2016.57.3.389
- Chen, C.H., Zhu, Y.F., Yao, Y., Huang, Y. and Long, X. (2016), "An evaluation method to predict progressive collapse resistance of steel frame structures", J. Constr. Steel Res., 122, 238-250. https://doi.org/10.1016/j.jcsr.2016.03.024
- Chen, C., Gong, H., Yao, Y., Huang, Y. and Keer, L.M. (2018), "Investigation on the seismic performance of T-shaped column joints", Comput. Concrete, 21(3), 335-344. https://doi.org/10.12989/CAC.2018.21.3.335
- Chen, C., Zhang, Q., Keer, L.M., Yao, Y. and Huang, Y. (2018), "The multi-factor effect of tensile strength of concrete in numerical simulation based on the Monte Carlo random aggregate distribution", Constr. Build. Mater., 165, 585-595. https://doi.org/10.1016/j.conbuildmat.2018.01.056
- Chen, J. and Li, Q.S. (2019), "Vibration characteristics of a rotating pre-twisted composite laminated blade", Compos. Struct., 208, 78-90. https://doi.org/10.1016/j.compstruct.2018.10.005
- Chen, W.R. and Keer, L.M. (1993), "Transverse vibrations of a rotating twisted Timoshenko beam under axial loading", J. Vibr. Acoust., 115(3), 285-294. https://doi.org/10.1115/1.2930347
- Choi, S.C., Park, J.S. and Kim, J.H. (2007), "Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites", J. Sound Vibr., 300(1), 176-196. https://doi.org/10.1016/j.jsv.2006.07.051
- Fazayeli, H. and Kharazi, M. (2017), "Effect of pre-twist on the nonlinear vibration of the blades considering the bendingbending-torsion coupling", Proceedings of the 8th International Conference on Mechanical and Aerospace Engineering, Prague, Czech Republic, July.
- Huang, Y., Chen, C.H., Leon, M.K. and Yao, Y. (2017), "A general solution to structural performance of pre-twisted Euler beam subject to static load", Struct. Eng. Mech., 64(2), 205-212. https://doi.org/10.12989/sem.2017.64.2.205
- Karimi-Nobandegani, A., Fazelzadeh, S.A. and Ghavanloo, E. (2018), "Non-conservative stability of spinning pretwisted cantilever beams", J. Sound Vibr., 412, 130-147. https://doi.org/10.1016/j.jsv.2017.09.035
- Li, L., Liao, W.H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070
- Mustapha, K.B. (2017), "Dynamic behaviors of spinning pretwisted Rayleigh micro-beams", Eur. J. Comput. Mech., 26(5-6), 473-507. https://doi.org/10.1080/17797179.2017.1354576
- Nabi, S.M. and Ganesan, N. (1996), "Comparison of beam and plate theories for free vibrations of metal matrix composite pretwisted blades", J. Sound Vibr., 189(2), 149-160. https://doi.org/10.1006/jsvi.1996.0012
- Rao, S.S. and Gupta, R.S. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vibr., 242(1), 103-124. https://doi.org/10.1006/jsvi.2000.3362
- Sachdeva, C., Gupta, M. and Hodges, D.H. (2017), "Modeling of initially curved and twisted smart beams using intrinsic equations", Int. J. Sol. Struct., 148, 3-13. https://doi.org/10.1016/j.ijsolstr.2017.10.010
- Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009
- Shenas, A.G., Ziaee, S. and Malekzadeh, P. (2017), "Nonlinear vibration analysis of pre-twisted functionally graded microbeams in thermal environment", Thin-Wall. Struct., 118, 87-104. https://doi.org/10.1016/j.tws.2017.05.003
- Sinha, S.K. and Turner, K.E. (2011), "Natural frequencies of a pre-twisted blade in a centrifugal force field", J. Sound Vibr., 330(11), 2655-2681. https://doi.org/10.1016/j.jsv.2010.12.017
- Tabarrok, B., Farshad, M. and Yi, H. (1988), "Finite element formulation of spatially curved and twisted rods", Comput. Meth. Appl. Mech. Eng., 70(3), 275-299. https://doi.org/10.1016/0045-7825(88)90021-7
- Yoo, H.H., Kwak, J.Y. and Chung, J. (2001), "Vibration analysis of rotating pre-twisted blades with a concentrated mass", J. Sound Vibr., 240(5), 891-908. https://doi.org/10.1006/jsvi.2000.3258
- Yu, A., Fang, M. and Ma, X. (2002), "Theoretical research on naturally curved and twisted beams under complicated loads", Comput. Struct., 80(32), 2529-2536. https://doi.org/10.1016/S0045-7949(02)00329-2
- Zupan, D. and Saje, M. (2004), "On a proposed standard set of problems to test finite element accuracy: The twisted beam", Fin. Elem. Analy. Des., 40(11), 1445-1451 https://doi.org/10.1016/j.finel.2003.10.001
Cited by
- The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.617
- The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.617