DOI QR코드

DOI QR Code

Spatial and Temporal Changes in Sediments of Major Tidal Flats in the Western and Southern Korean Coasts: Grain Size, Organic Matter, Trace Metals

한반도 서·남해 주요 갯벌 퇴적물의 시·공간적 변화: 입도, 유기물, 중금속

  • Received : 2019.01.08
  • Accepted : 2019.02.13
  • Published : 2019.02.28

Abstract

As a part of the national marine ecosystem monitoring program, the temporal and spatial variation of sedimentary environment and pollution of organic matters and trace metals from four major tidal flats, i.e., Ganghwa Is., Garolim bay, Jeung Is., Suncheon bay, was investigated for 3 yerars from 2015 to 2017. The mean grain size of the sediment was $5.0-5.3{\varnothing}$ at Ganghwa Is, $4.5-4.8{\varnothing}$ at Garolim bay, $6.1-6.5{\varnothing}$ at Jeung Is, and $8.6-8.7{\varnothing}$ at Suncheon bay. The mean grain size (Mz) tended to decrease from the north (Ganghwa Is.) to the south (Suncheon bay). The ignition loss (IL) was 15.5% in Suncheon bay in 2015, which was relatively high compared to other sites, but gradually decreased over time from 8.3% in 2016 to 7.0% in 2017. In Jeung Is. and Suncheon bay, the concentration of Zn and As exceeded the threshold effect level (TEL) at some stations, but the range of trace metals in the other sites was below the level. In Jeung Is., the Mz and concentration of trace metals except Hg was positively correlated (r= 0.40-0.88, P<0.05). On the other hand, Mz was negatively correlated with trace metals (P<0.05) in Suncheon bay. The geoaccumulation index ($I_{geo}$) to evaluate contamination status of sediments for trace metal was less than 1(not contaminated) for Cu, Zn, Pb, Cd and Hg, and 2-3 (moderately to strongly polluted) for As at several stations in Suncheon bay and Jeung Is.

국가해양생태계종합조사의 일환으로 2015년부터 2017년까지 3년간 강화남단, 가로림만, 증도, 순천만 등 한반도 4개 대표 갯벌에서 시계열 변화에 따른 퇴적환경 및 유 무기 오염현황을 조사하였다. 조사시기 및 지역별 퇴적물의 평균입도는 강화남단 $5.0-5.3{\varnothing}$, 가로림만 $4.5-4.8{\varnothing}$, 증도 $6.1-6.5{\varnothing}$, 순천만 $8.6-8.7{\varnothing}$이었다. 전반적으로 강화남단에서 순천만으로 남하함에 따라 입도가 조립해지는 경향을 나타내었고, 순천만에서 가장 세립한 경향을 보였다. 조사시기별로 강화남단과 증도의 경우 2015년보다 2017년에 평균입도가 보다 세립화되는 경향을 나타내었다. 강열감량은 2015년 순천만에서 15.5%로 다른 지역에 비해 상대적으로 높았으나 2016년 8.3%, 2017년 7.0%로 시간의 경과에 따라 점차 감소되었다. 미량금속 농도는 증도와 순천만의 일부정점에서 Zn와 As가 주의기준(TEL)을 초과하였으나 기타 금속의 경우 오염농도 이하의 범위로 분석되어 오염의 개연성이 나타나지 않았다. 연구지역내 퇴적물중 평균입도와 미량금속 농도 사이의 관계를 살펴본 결과, 증도의 경우 수은을 제외한 모든 미량금속과 강열감량이 평균입도와 정의 상관성(r=0.40-0.88, P < 0.05)을 보였다. 반면 순천만의 경우, 입도와 미량금속은 유의한 상관성이 없는 것으로 파악되었으며, 강열감량과 미량금속 간에 음의 상관성(p < 0.05)을 나타내었다. 퇴적물의 미량금속 오염을 평가하기 위하여 농집지수 $I_{geo}$를 계산한 결과, Cu, Zn, Pb, Cd, Hg에 대해서는 1보다 작은 범위로 오염되지 않았고, As의 경우 순천만과 증도의 일부정점에서 약간 오염된 수준에 해당되었다.

Keywords

GHOHBG_2019_v24n1_54_f0001.png 이미지

Fig. 1. Study area and sampling sites

GHOHBG_2019_v24n1_54_f0002.png 이미지

Fig. 2. Temporal variation in mean grain size of surface sediment from 2015 to 2017.

GHOHBG_2019_v24n1_54_f0003.png 이미지

Fig. 3. Temporal variation of ignition loss (IL) in surface sediment from 2015 to 2017

GHOHBG_2019_v24n1_54_f0004.png 이미지

Fig. 4. Temporal variation of acid volatile sulfide (AVS) of surface sediment from 2015 to 2017.

GHOHBG_2019_v24n1_54_f0005.png 이미지

Fig. 5. Temporal and spatial variation of trace metals (Cu, Zn, Pb, As, Cd, Hg) of surface sediment in the tidal flat of Korea

Table 1. Sedimentary type of surface sediment in four major tidal flats of Korea

GHOHBG_2019_v24n1_54_t0001.png 이미지

Table 2. Comparison of characteristics of sediments in various tidal flats of Korea

GHOHBG_2019_v24n1_54_t0002.png 이미지

Table 3. Sediment qualities of major tidal flats classified by geoaccumulation index(Igeo)

GHOHBG_2019_v24n1_54_t0003.png 이미지

References

  1. Baek, Y.S., S.H. Lee, S.H. Lee, H.J. Kim, H.T. Jou and S.O. Ryu, 2016. Textural facies and distribution of surface sediments and morphology on Korean tidal flats. Coastal Research, 75: 1307-1311. https://doi.org/10.2112/SI75-262.1
  2. Baek, Y.S., J.K. Kim and S.S. Chun, 2016. Spatio-temporal zonation by ichnocoenoses combined with sedimentary facies in the Yeochari tidal flat (Ganghwa Island), the Han River estuary of Korea, Geosciences Journal, 20: 295-309. https://doi.org/10.1007/s12303-015-0059-5
  3. Cho, H.C. and Y.G. Cho, 2015. Heavy metals in surface sediments from Doam bay, Southwestern coast of Korea. J.Kor.Soc.Oceanogr., 20: 159-168.
  4. Cho Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea, Marine Geology, 159: 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  5. Choi J.K., J.A. Eom and J.H. Ryu, 2011. Spatial relationships between surface sedimentary facies distribution and topography using remotely sensed data: Example from the Ganghwa tidal flat, Korea, Marine Geology, 280: 205-211. https://doi.org/10.1016/j.margeo.2010.10.022
  6. Folk, R.L., 1968. Petrology of sedimentary rock. Hemphill Publishing Co., Austin, TX, USA, p. 170.
  7. Hue, H.K., D.H. Kim, S.H. Ahn and W.W. Park, 2000. Characteristics of the sedimentary environment in Yoja bay in the summer of 1998. Kor J. Environ Biol, 18: 227-235.
  8. Hwang, D.W., P.J. Kim, R.H. Jung and S.P. Yoon, 2013. Distributions of organic matter and trace metals in intertidal surface sediment from the Mokpo-Haenam coast. Kor. J. Fish. Aquat. Sci., 46: 454-466. https://doi.org/10.5657/KFAS.2013.0454
  9. Hwang, D.W., S.G. Kim, M.K. Choi, I.S. Lee, S.S. Kim and H.G. Choi, 2016. Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar. Pollut. Bull., 102: 230-239. https://doi.org/10.1016/j.marpolbul.2015.09.045
  10. Hwang, D.W. and B.S. Koh, 2012. Sedimentary and benthic environment characteristics in macroalgal habitats of the intertidal zone in Hampyeong bay, Kor J Fish Aquat Sci., 45: 694-703. https://doi.org/10.5657/KFAS.2012.0694
  11. Hwang, D.W., S.O. Ryu, S.G. Kim, O.I. Choi, S.S. Kim and B.S. Koh, 2010. Geochemical characteristics of intertidal surface sediments along the southwestern coast of Korea, Kor J. Fish. Aquat. Sci., 43: 146-158. https://doi.org/10.5657/KFAS.2010.43.2.146
  12. Ingram, R.L. Sieve analysis. 1971. In: Carver. R.E.(ed.). Procedures in sedimentary petrology. Willey-InterScience, New York, pp. 49-67.
  13. Jang, S.G. and C.J. Cheong, 2010. Characteristics of grain size and organic matters in the tidal flat sediments of the Suncheon bay, Journal of the Korean Society for Marine Environmental Engineering, 13(3): 198-205.
  14. Lee, H.J., H.R. Jo, Y.S. Chu and K.S. Bahk, 2004. Sediment transport on macrotidal flats in Garolim bay, west coast of Korea: significance of wind waves and asymmetry of tidal currents, Continental Shelf Research, 24: 821-832. https://doi.org/10.1016/j.csr.2004.01.005
  15. MOF (Ministry of Ocenas and Fisheries) 2013a. Maritime environment pollutant testing method, Notification No. 2013-230.
  16. Muller G. 1969. Index of geoaccumlation in sediments of the Rhine River, Geo Journal, 2: 109-118.
  17. MOF (Ministry of Oceans and Fisheries) 2013b. Marine environmental standard for sediment, Notification No. 2013-186, http://www.law.go.kr.
  18. MOF (Ministry of Oceans and Fisheries) 2014. Notification No. 2014-96.
  19. Ra, K., E.S. Kim, K.T. Kim, J.K. Kim, J.M. Lee and J.Y. Choi, 2013. Assessment of heavy metal contamination and its ecological risk in the surface sediments along the coast of Korea. J.Coast. Res., 65: 105-110. https://doi.org/10.2112/SI65-019.1
  20. Ryu, S.O., H.S. You and J.D. Lee, 1999. Seasonal variation of surface sediments and accumulation rate on the intertidal flats in Hampyong bay, Southwestern coast of Korea, Journal of the Korean Society of Oceanography, 4(2): 127-135.
  21. Shin, D.H., H.I. Yi, S.J. Han, J.K. Oh and S.J. Kwon, 1998. Trnasport paths of surface sediment on the tidal flat of Garolim bay, West coast of Korea, Journal of the Korean Society of Oceanography, 3(2): 59-70.
  22. Taylor, S.R., 1964. Abundance of chemical elements in the continental curst: A new table. Geochem Cosmochim Acta, 28: 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
  23. Taylor, S.R. and S.M. McLennan, 1995. The geochemical evolution of the continental crust. Reviews of Geophys, 33: 241-265. https://doi.org/10.1029/95RG00262
  24. Yokoyama, H. 2000. Environmental quality criteria for aquaculture farms in Japanese coastal area-a new policy and its potential problems. Bul Natl Res Ins Aquacult, 29: 123-134.
  25. Youn, S.T., Y.K. Koh and S.O. Ryu, 1999. Distribution characteristics of surface sediments and metal elements in Hampyong bay, the Southwestern coast of Korea, J of the Korean Environmental Sciences Society, 8(6): 677-684.