DOI QR코드

DOI QR Code

Line-of-Sight Rate for Off-axis Seeker on a 2-axis Gimbal

2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산

  • Received : 2019.01.10
  • Accepted : 2019.02.25
  • Published : 2019.03.01

Abstract

The off-axis Infra-Red(IR) seeker is mounted on the nose cone side of the anti-air high speed missile to alleviate thermal shield effect due to aerodynamic heating. The seeker output can not be regarded as the Line-of-Sight(LOS) rate any more as missile's roll motion to keep the target tracking is associated. In this paper, we propose a method to calculate the LOS rate for off-axis seeker on a 2-axis gimbal. Firstly, true LOS rate equations are analytically derived but not implementable because boresight error rate is not measurable. And then the first order lag approximation to obtain boresight error rate is proposed. The proposed LOS rate calculation method can compensate the coupling effect by considering the rotations of missile and gimbal. The performance of the proposed method is verified via full nonlinear 6-DOF(Degree of Freedom) simulations.

비축 적외선 탐색기는 공력 가열에 의한 열 차폐 효과를 완화시키기 위해 대공 고속 유도탄의 노즈콘 측면에 장착된다. 탐색기 출력은 표적을 지속적으로 추적하기 위한 유도탄의 롤 기동이 관여되었을 때 더 이상 시선각속도로 간주할 수 없다. 본 논문에서는 2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산 방식을 제안한다. 첫째로, 실제 시선각속도 방정식은 해석적으로 도출되지만 조준각 오차 변화율을 측정할 수 없어 구현할 수 없다. 그에 따라 조준각 오차 변화율을 획득하기 위해 1차 지연 근사화를 제안한다. 제안한 시선각속도 계산 방식은 유도탄과 김발의 회전을 고려하여 커플링 효과를 보상할 수 있다. 제안한 방식의 성능을 비선형 6 자유도 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. Leite, C. D. F., "Aerothermal Effects on the Infrared Seeker Staring Sensor Performance of High Supersonic Missiles," Master's thesis, Naval Postgraduate School Monterey, 1995, pp.1-3.
  2. Li, C. C., Huang, D. W., Su, Y. C., and Tasi, L. C., "Study of Aero-thermal Effects with Heat Radiation in Optical Side Window," World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering, Vol. 6, No. 5, 2012, pp.943-947.
  3. Yingbo, H., and Yong, Q., "THAAD-Like High Altitude Theater Missile Defense: Strategic Defense Capability and Certain Countermeasures Analysis," Science & Global Security, Vol. 11, No. 2, 2010, pp.151-202. https://doi.org/10.1080/714041034
  4. Liu, L., Yan, L., Zhao, H., Dai., X., and Zhang, T., "Correction of Aeroheating-Induced Intensity Nonuniformity in Infrared Images," Infrared Physics & Technology, Vol. 76, May 2016, pp.235-241. https://doi.org/10.1016/j.infrared.2016.02.008
  5. Palumbo, N. F., Blauwkamp, R. A., and Lloyd, J. M., "Basic Principles of Homing Guidance," Johns Hopkins APT Technical Digest, Vol. 29, No. 1, 2010, pp.25-41.
  6. Whang, I. H., and Hwang, T. W., "A LOS Rate Estimator for Homing Seekers with 2 Axis Gimbal System," Journal of Institute of Control, Vol. 7, No. 12, December 2001, pp.1024-1030.
  7. Stevens, B. L., and Lewis, F. L., Aircraft Control and Simulation, 2nd Ed., WILEY, 2016, pp.27-29.
  8. Moharampour, A., Poshtan, J., and Sedigh, A. K., "A Modified Proportional Navigation Guidance for Accurate Target Hitting," Iranian Journal of Electrical and Electronic Engineering, Vol. 6, No. 1, 2010, pp.20-28.
  9. Spencer, J. K., Gosling, T. W., and Christian, W. C., "Ballistic Missile Defense: Information on Theater High Altitude Area Defense(THAAD) System," U.S. General Accounting Office(GAO), 1994.
  10. Kim, J. H., Hong, J. H., Park, K. K., and Ryoo, C. K., "Line-of-Sight Rate Analysis for a Missile with Two-Axes Gimbal Seeker Mounted on the Nose Cone Platform," Proceedings of the SICE Annual Conference, September 2017, pp.458-463.