Fig. 1. Illustration of shear coating process. The illustration shows the formation of MHP film when shear coating method is applied. The upper plate is a glass blade and the lower plate fixed on a hot plate is an ITO glass substrate. MHP precursor solution is located on the area between these glasses. The film is fabricated by moving precursor solution with the upper plate in one direction.
Fig. 2. The optical microscopy image (a), the grain size distribution (b) of MHP film deposited by the shear coating and the scanning electron microscopy image(c) and the grain size distribution (d) of MHP film deposited by the spin coating.
Fig. 3. The optical microscopy images and grain size distributions of MHP films when DMF (a and b) and mixture of GBL and DMSO (7:3 volume ratio) (c and d) are used as solvents of MHP precursor solutions. (scale bar: 100 μm)
Fig. 4. Effects of substrate temperatures on the grain growth of the shear coating process. Average size of MHP grains increases as substrate temperature increases from 100oC to 160oC when GBL:DMSO=7:3 solution is used as solvent of MHP precursor solution. However, there is no tendency of grain size according to the substrate temperature when DMF is used. (scale bar: 100 μm)
Fig. 5. Effects of shear rate and concentration of MHP precursor solutions on the grain growth. Grain morphology changes as shear rate increases from 2 mm/s to 6 mm/s. (scale bar: 100 μm)
Fig. 6. Effects of shear rates on the surface morphology of MHP films. The MHP films are deposited with 35wt% precursor solution, and different shear rates of 4~6 mm/s are applied on these films.
Fig. 7. XRD result of MHP film deposited by shear coating (*ITO). XRD data shows existence of two substances, CH3NH3PbI3 and ITO. The indices and star symbols demonstrate CH3NH3PbI3 and ITO, respectively.
Fig. 8. Effects of the annealing time and temperature on J-V performances(a and b) of MHP solar cells of which light absorption layers are made by shear coating. (c) The influence of the annealing temperature on the PL of the shear coated MHP layers.
References
- N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Gratzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358 (2017) 768-771. https://doi.org/10.1126/science.aam5655
- H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z. -H. Lu, Z. Yang, S. Hoogland and E. H. Sargent, Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation, Science, 355 (2017) 722-726. https://doi.org/10.1126/science.aai9081
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13 (2014) 897-903. https://doi.org/10.1038/nmat4014
- M. Liu, M. B. Johnston and Henry J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398. https://doi.org/10.1038/nature12509
- J. Burschka, N. Pellet, S. -J. Moon, R. H. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to highperformance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319. https://doi.org/10.1038/nature12340
- W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272
- Y. Diao, L. Shaw, Z. Bao and S. C. B. Mannsfeld, Morphology control strategies for solutionprocessed organic semiconductor thin films, Energy Environ. Sci., 7 (2014) 2145-2159. https://doi.org/10.1039/C4EE00688G
-
J. H. Heo, M. H. Lee, M. H. Jang and S. H. Im, Highly efficient
$CH_3NH_3PbI_{3-x}Cl_x$ mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating, J. Mater. Chem. A, 4 (2016) 17636-17642. https://doi.org/10.1039/C6TA06718B - X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan and S. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature, Nanoscale, 8 (2016) 3816-3822. https://doi.org/10.1039/C5NR08935B
- Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan and J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions, RSC Adv., 5 (2015) 60562-60569. https://doi.org/10.1039/C5RA09110A
- W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang and A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347 (2015) 522-525. https://doi.org/10.1126/science.aaa0472
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Solvent annealing of perovskite?induced crystal growth for photovoltaic?device efficiency enhancement, Adv. Mater., 26 (2014) 6503-6509. https://doi.org/10.1002/adma.201401685
- Y. Diao, B. C-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld and Z. Bao, Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains, Nat. Mater., 12 (2013) 665-671. https://doi.org/10.1038/nmat3650
- G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature, 480 (2011) 504-508. https://doi.org/10.1038/nature10683
- M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. -B. Cheng and L. Spiccia, A fast deposition?crystallization procedure for highly efficient lead iodide perovskite thin?film solar cells, Angew. Chem., 126 (2014) 10056-10061. https://doi.org/10.1002/ange.201405334
- H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546. https://doi.org/10.1126/science.1254050
-
D. -Y. Son, J. -W. Lee, Y. J. Choi, I. -H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim and N. -G. Park, Self-formed grain boundary healing layer for highly efficient
$CH_3$ $NH_3PbI_3$ perovskite solar cells, Nat. Energy, 1 (2016) 16081-16088. https://doi.org/10.1038/nenergy.2016.81 - Y. Deng, Q. Wang, Y. Yuan and J. Huang, Vividly colorful hybrid perovskite solar cells by doctorblade coating with perovskite photonic nanostructures, Mater. Horiz., 2 (2015) 578-583. https://doi.org/10.1039/C5MH00126A
- R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389 (1997) 827-829. https://doi.org/10.1038/39827
- M. Golubitsky, J. W. Swift and E. Knobloch, Symmetries and pattern selection in Rayleigh-Benard convection, Physica D, 10 (1984) 249-276. https://doi.org/10.1016/0167-2789(84)90179-9
- M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest and K. Zhu, Perovskite ink with wide processing window for scalable highefficiency solar cells, Nat. Energy, 2 (2017) 17038. https://doi.org/10.1038/nenergy.2017.38
- M. He, B. Li, X. Cui, B. Jiang, Y. He, Y. Chen, D. O'Neil, P. Szymanski, M. A. EI-Sayed, J. Huang and Z. Lin, Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cell, Nat. Commun., 8 (2017) 16045. https://doi.org/10.1038/ncomms16045