Figure 3.1. Structure of recurrent neural network.
Figure 3.2. Example of underfitting, overfitting, and proper fitting.
Figure 4.1. Example of one step ahead out-of-sample forecasting.
Figure 4.2. SACF and CCF plot of fMRI data.
Figure 4.3. Forecasting plot of brain channel 1, 12.
Figure 4.4. SACF and CCF plot of daily realized volatility data.
Figure 4.5. Forecasting plot of Nikkei 225, KOSPI.
Table 4.1. Result of fMRI data
Table 4.2. MASE ratio with FIVAR and LSTM, VARFI and LSTM: fMRI data
Table 4.3. Result of daily volatility data
Table 4.4. MASE ratio with FIVAR and LSTM, VARFI and LSTM: Daily volatility data
Table 4.5. Notation of daily volatility data
참고문헌
- Aladag, C. H., Egrioglu, E., and Kadilar, C. (2009). Forecasting nonlinear time series with a hybrid methodology, Applied Mathematics Letters, 22, 1467-1470. https://doi.org/10.1016/j.aml.2009.02.006
- Baek, C., Kechagias, S., and Pipiras, V. (2018). Asymptotics of bivariate local Whittle estimators with applications to fractal connectivity, Preprint.
- Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: continual prediction with LSTM, Neural Computation, 12, 2451-2471. https://doi.org/10.1162/089976600300015015
- Granger, C. W. J. and Joyeux, R. (1980). An introduction to long?memory time series models and fractional differencing, Journal of Time Series Analysis, 1, 15-39. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580.
- Ho, S. L., Xie, M., and Goh, T. N. (2002). A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction, Computers & Industrial Engineering, 42, 371-375. https://doi.org/10.1016/S0360-8352(02)00036-0
- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hosking, J. R. M. (1981). Fractional differencing, Biometrika, 68, 165-176. https://doi.org/10.1093/biomet/68.1.165
- Hyndman, R. J. (2006). Another look at forecast-accuracy metrics for intermittent demand, Foresight: The International Journal of Applied Forecasting, 4, 43-46.
- Kechagias, S. and Pipiras, V. (2015). Definitions and representations of multivariate long?range dependent time series, Journal of Time Series Analysis, 36, 1-25. https://doi.org/10.1111/jtsa.12086
- Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization, arXiv:1412.6980.
- Kohzadi, N., Boyd, M. S., Kermanshahi, B., and Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices, Neurocomputing, 10, 169-181. https://doi.org/10.1016/0925-2312(95)00020-8
- Lobato, I. N. (1997). Consistency of the averaged cross-periodogram in long memory series, Journal of Time Series Analysis, 18, 137-155. https://doi.org/10.1111/1467-9892.00043
- Sela, R. J. and Hurvich, C. M. (2008). Computationally efficient methods for two multivariate fractionally integrated models, Journal of Time Series Analysis, 30, 631-651. https://doi.org/10.1111/j.1467-9892.2009.00631.x
- Smith, E. M., Smith, J., Legg, P., and Francis, S. (2017). Predicting the occurrence of world news events using recurrent neural networks and auto-regressive moving average models, Advances in Computational Intelligence Systems, 191-202.
- Termenon, N., Jaillard, A., Delon-Martin, C., and Achard, S. (2016). Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project, Neuroimage, 142, 172-187. https://doi.org/10.1016/j.neuroimage.2016.05.062
- Whittle, P. (1963). On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix, Biometrika, 50, 129-134. https://doi.org/10.1093/biomet/50.1-2.129