Figure 4.1. Sensitivity plots.
Figure 4.2. Sensitivity plots sliced by
Table 2.1. Survey result for the 19th presidential election in Seoul and Incheon/Gyeonggi-do
Table 3.1. Nonresponse models
Table 3.2. Estimated cell counts in Seoul
Table 4.1. Sensitivity analysis of Moon
Table 4.2. The estimates of MNAR model nearest to the election result
참고문헌
- Agresti, A. (2002). Categorical Data Analysis (2nd Ed), Wiley & Sons, New York.
- Baker, S. G., Ko, C., and Graubard, B. I. (2003). A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey, Biostatistics, 4, 41-56. https://doi.org/10.1093/biostatistics/4.1.41
- Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse, Journal of American Statistical Association, 83, 62-69. https://doi.org/10.1080/01621459.1988.10478565
- Baker, S. G., Rosenberger, W. F., and Dersimonian, R. (1992). Closed-form estimates for missing counts in two-way contingency tables, Statistics in Medicine, 11, 643-657. https://doi.org/10.1002/sim.4780110509
- Choi, B. S., Choi, J. W., and Park, Y. (2009). Bayesian methods for an incomplete two-way contingency table with application to the Ohio (Buckeye State) Polls, Survey Methodology, 35, 37-51.
- Clarke, P. S. (2002). On boundary solutions and identifiability in categorical regression with non-ignorable non-response, Biometrical Journal, 44, 701-717. https://doi.org/10.1002/1521-4036(200209)44:6<701::AID-BIMJ701>3.0.CO;2-1
- Fay, R. E. (1986). Causal models for patterns of nonresponse, Journal of American Statistical Association, 81, 354-365. https://doi.org/10.1080/01621459.1986.10478279
- Forster, J. J. and Smith, P. W. F. (1998). Model-based inference for categorical survey data subject to nonignorable nonresponse, Journal of the Royal Statistical Society: Series B, 60, 57-70. https://doi.org/10.1111/1467-9868.00108
- Kim, S. (2016). Sensitivity analysis for uncertainty of missing mechanisms in an incomplete contingency table, Journal of the Korean Data Analysis Society, 18, 1845-1855.
- Kim, S. and Kim, D. (2018). Assessment of nonignorable log-linear models for an incomplete contingency table, Statistica Sinica, 28, 1887-1905.
- Kim, S., Park, Y., and Kim, D. (2015). On missing-at-random mechanism in two-way incomplete contingency tables, Statistics and Probability Letters, 96, 196-203. https://doi.org/10.1016/j.spl.2014.09.026
- Little, J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd Edition, Wiley & Sons, New York.
- Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data, Journal of American Statistical Association, 88, 125-134. https://doi.org/10.2307/2290705
- Molenberghs, G., Beunckens, C., Sotto, C., and Kenward, M. G. (2008). Every missingness not at random model has a missingness at random counterpart with equal fit, Journal of the Royal Statistical Society: Series B, 70, 371-388. https://doi.org/10.1111/j.1467-9868.2007.00640.x
- Molenberghs, G., Kenward, M. G., and Goetghebeur, E. (2001). Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case, Journal of the Royal Statistical Society: Series C, 50, 15-29. https://doi.org/10.1111/1467-9876.00217
- Poleto, F. Z., Singer, J. M., and Paulino, C. D. (2011). Missing data mechanisms and their implications on the analysis of categorical data, Statistics and Computing, 21, 31-43. https://doi.org/10.1007/s11222-009-9143-x
- Vansteelandt, S., Goetghebeur, E., Kenward, M. G., and Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis, Statistica Sinica, 16, 953-979.