DOI QR코드

DOI QR Code

A comparison of multiple hypothesis testing methods and combination methods in seamless Phase II/III clinical trials

심리스 제2상/제3상 임상시험에서 다중가설검정방법과 결합검정방법의 비교연구

  • Han, Song (LG Chem, Ltd) ;
  • Yoo, Hanna (Department of Computer Software, Busan University of Foreign Studies) ;
  • Lee, Jae Won (Department of Statistics, Korea University)
  • 한송 (LG화학(주)) ;
  • 유한나 (부산외국어대학교 컴퓨터소프트웨어학부) ;
  • 이재원 (고려대학교 통계학과)
  • Received : 2018.05.11
  • Accepted : 2018.12.05
  • Published : 2019.02.28

Abstract

An adaptive seamless Phase II/III clinical trial design enables a reduction in the sample size (in comparison to a conventional design) that also shortens the clinical development time. It is also very effective in clinical trials since it can have higher statistical power than Phase III alone. In this study, we use extensive simulation studies to compare several multiple hypothesis testing methods that can help select the best doses in a Phase II study along with several methods to combine p-values of the Phase II and Phase III study.

최근에 제안된 심리스(seamless) 제 2상/제 3상 임상시험 디자인은 기존의 임상시험 디자인들과 비교하여 피험자수를 줄일 수 있을 뿐만 아니라 임상 개발 시간을 단축시킬 수 있다는 장점을 가지고 있어 임상시험연구자들의 많은 관심을 끌고 있다. 또한 제 3상 시험을 단독으로 진행 하였을 때보다 더 높은 검정력을 가질 수 있으므로 임상시험에서 매우 효율적이라 말할 수 있다. 본 논문에서는 제 2상에서 최고효과 용량군을 선정하기 위한 여러 가지 다중가설 검정방법들을 제시하고 제 2상에서 최고효과 용량군을 선정한 후에 제 2상과 제 3상을 결합하는 여러 가지 유의확률 결합검정방법들을 제시하였다. 또한 모의실험을 통해서 심리스 제 2상/제 3상 임상설계가 적용되었을 때 여러 가지 방법들을 비교함으로써, 제 2상/제 3상 표본의 크기 조합이나 분산의 크기가 다른 여러 가지 상황에서 가장 적절한 방법을 선택하는 가이드라인을 제시하고자 한다.

Keywords

Table 3.1. Contigency table of hypothesis test

GCGHDE_2019_v32n1_1_t0001.png 이미지

Table 5.1. Sample size of effect size and standard deviation

GCGHDE_2019_v32n1_1_t0002.png 이미지

Table 5.2. Comparison of power (α = 0.025, σ = 3) under effect size (0, 0, 0, 1)

GCGHDE_2019_v32n1_1_t0003.png 이미지

Table 5.3. Comparison of power (α = 0.025, σ = 3) under effect size (0.5, 0.5, 0.5, 1)

GCGHDE_2019_v32n1_1_t0004.png 이미지

Table 5.4. Comparison of power (α = 0.025, σ = 5) under effect size (0, 0, 0, 1)

GCGHDE_2019_v32n1_1_t0005.png 이미지

Table 5.5. Comparison of power (α = 0.025, σ = 5) under effect size (0.5, 0.5, 0.5, 1)

GCGHDE_2019_v32n1_1_t0006.png 이미지

References

  1. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  2. Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, 29, 1165-1188. https://doi.org/10.1214/aos/1013699998
  3. Bauer, P. and Kohne, K. (1994). Evaluation of experiments with adaptive interim analyses, Biometrics, 50, 1029-1041. https://doi.org/10.2307/2533441
  4. Cui, L., Hung, H. M. J., and Wang, S. J. (1999). Modification of sample size in group sequential clinical trials, Biometrics, 55, 853-857. https://doi.org/10.1111/j.0006-341X.1999.00853.x
  5. Denne, J. S. (2001). Sample size recalculation using conditional power, Statistics in Medicine, 20, 2645-2660. https://doi.org/10.1002/sim.734
  6. Dunn, O. J. (1961). Multiple comparisons among means, Journal of the American Statistical Association, 56, 54-62.
  7. Fisher, L. D. (1998). Self-designing clinical trials, Statistics in Medicine, 17, 1551-1562. https://doi.org/10.1002/(SICI)1097-0258(19980730)17:14<1551::AID-SIM868>3.0.CO;2-E
  8. Fisher, R. A. (1932). Statistical Methods for Research Workers (4th ed), Oliver and Boyd, London.
  9. Friede, T., Parsons, N., Stallard, N., Todd, S., Valdes-Marquez, E., Chataway, J., and Nicholas, R. (2011). Designing a seamless phase II/III clinical trial using early outcomes for treatment selection: an application in multiple sclerosis, Statistics in Medicine, 30, 1528-1540. https://doi.org/10.1002/sim.4202
  10. George, E. O. (1977). Combining Independent One-sided and Two-sided Statistical Tests - Some Theory and Applications. Unpublished Doctoral Dissertation, University of Rochester.
  11. Hochberg, Y. (1988) A shaper Bonferroni procedure for multiple tests of significance, Biometrika, 75, 800-803 https://doi.org/10.1093/biomet/75.4.800
  12. Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure, Scandinavian Journal of Statistics, 6, 65-70.
  13. Hommel, G. (1986). Multiple test procedures for arbitrary dependence structures, Metrika, 33, 321-336. https://doi.org/10.1007/BF01894765
  14. Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test, Biometrika, 75, 383-386. https://doi.org/10.1093/biomet/75.2.383
  15. Jennison, C. and Turnbull, B. W. (2007). Adaptive seamless designs: selection and prospective testing of hypotheses, Journal of Biopharmaceutical Statistics, 17, 1135-1161 https://doi.org/10.1080/10543400701645215
  16. Kunz, C., Friede, T., Parsons, N., Todd, S., and Stallard, N. (2015). A comparison of methods for treatment selection in seamless Phase II/III clinical trials incorporating information on short-term endpoints, Journal of Biopharmaceutical Statistics, 25, 170-189. https://doi.org/10.1080/10543406.2013.840646
  17. Lehmacher, W. and Wassmer, G. (1999). Adaptive sample size calculation in group sequential trials, Biometrics, 55, 1286-1290. https://doi.org/10.1111/j.0006-341X.1999.01286.x
  18. Mosteller, F. and Bush, R. R. (1954). Selected quantitative techniques. In: Lindzey, G., ed. Handbook of Social Psychology, Vol. 1. Cambridge, MA: Addison-Wesley, 289-334.
  19. Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of the Simes conjecture, Annals of statistics, 26, 494-504. https://doi.org/10.1214/aos/1028144846
  20. Sarkar, S. and Chang, C. (1997). The Simes method for multiple hypothesis testing with positively dependent test statistics, Journal of American Statistical Association, 92, 1601-1608. https://doi.org/10.1080/01621459.1997.10473682
  21. Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance, Biometrika, 79, 751-754. https://doi.org/10.1093/biomet/73.3.751
  22. Stallard, N. (2010). A confirmatory seamless phase II/III clinical trial design incorporating short-term endpoint information, Statistics in Medicine, 29, 959-971. https://doi.org/10.1002/sim.3863
  23. Thall, P. F., Simon, R., and Ellenberg, S. S. (1988). Two-stage selection and testing designs for comparative clinical trials, Biometrika, 75, 303-310. https://doi.org/10.1093/biomet/75.2.303