DOI QR코드

DOI QR Code

A Study on Risk Factor Identification by Specialty Construction Industry Sector through Construction Accident Cases : Focused on the Insurance Data of Specialty Construction Worker

건설재해사례 분석에 의한 전문건설업종별 위험요인 탐색 : 전문건설업 근로자 공제자료를 중심으로

  • 이영재 (동국대학교 경영정보학과) ;
  • 강성경 (동국대학교 경영정보학과) ;
  • 유환 (동국대학교 경영정보학과)
  • Received : 2018.11.14
  • Accepted : 2019.02.13
  • Published : 2019.02.28

Abstract

The number of domestic construction company is expanding every year while the construction workers' exposure to disaster risk is increasing due to technological advancements and popularity of high-rise buildings. In particular, the industry faces greater fatalities and severe large scale accidents because of construction industry characteristics including influx of foreign workers with different language and culture, large number of aged workers, outsourcing, high place work, heavy machine construction. The construction industry is labor-intensive, which is to be completed under given timeline and consists of unique working environment with a lot of night shifts. In addition, when a fixed construction budget is not secured, there is less investment in safety management resulting in poor risk management at the construction site. Taking account that the construction industry has higher accident risk rate and fatality rate, risky and unique working environment, and various labor pool from foreign to aged workers, preemptive safety management through risk factor identification is a mandatory requirement for the construction industry and site. The study analyzes about 8,500 cases of construction accidents that occurred over the past 10 years and identified risk factor by construction industry sector to secure a systematic insight for risk management. Based on interrelation analysis between accident types, work types, original cause materials and assailing materials, there is correlation between each analysis factor and work industry. Especially for work types, there is great correlation between work tasks and industry type. For reinforced concrete and earthwork are among the most frequent types of accidents, and they are not only high in frequency of accidents, but also have a high risk in categories of occurrence.

본 국내 건설업 사업자수는 매년 증가하고 있으며 산업의 고도화, 건설공사의 고층화 대형화로 건설업 근로자의 재해 노출 위험이 커지고 있다. 특히 문화와 언어가 다른 외국인 근로자 수의 증가, 다수의 중장년층 근로자, 옥외생산, 고소작업, 중장비 작업 등의 건설업 특성으로 타 산업에 비해 재해자가 많고 중대재해 위험 또한 높은 실정이다. 건설업의 경우 정해진 기간 안에 이루어져야하는 노동집약적 산업이고, 야간작업 등의 특수한 작업환경이 많으며 적정 공사비 확보가 안될 경우 안전관리에 대한 투자 또한 소홀하여 건설재해 요인에 대한 관리가 취약할 수밖에 없다. 건설업이 타 산업에 비해 재해율 및 사망률이 높고, 위험/특수한 작업환경, 다양한 국적 및 중장년층 근로자가 많다는 특성을 보았을 때, 위험요인 탐색을 통한 선제적인 건설 업종 현장 안전관리는 필수적이다. 본 연구에서는 건설 업종별 체계적인 위험관리를 위한 통찰력(Insight) 확보를 위해 지난 10여 년간 발생한 약 8500여 건의 건설재해사례를 분석하고 업종별 위험요인을 도출하였다. 분석결과 사고 다발 업종과 분석변수인 발생형태, 작업내용, 기인물, 가해물 간의 상호연관성을 살펴본 결과 각 분석변수와 사고 다발 업종은 서로 상호연관성이 있는 것으로 나타났으며, 특히 작업내용의 경우 각 업종과의 상호연관성 크기가 가장 큰 것으로 나타났다. 특히 사고 다발 업종 중 철근코크리트공사업과 토공사업은 재해발생빈도가 높을 뿐만 아니라 발생형태, 작업내용, 기인물, 가해물 내 대부분의 위험요인 카테고리에서 위험성이 높은 업종으로 나타났다.

Keywords

SOJBB3_2019_v24n1_45_f0001.png 이미지

Fig. 1 Research Model (Research Process)

SOJBB3_2019_v24n1_45_f0002.png 이미지

Fig. 2 Atypical Accident Categorization Process (Terminology Filtering and Classification)

Table 1 Accident Data Classification Category (Summary)

SOJBB3_2019_v24n1_45_t0001.png 이미지

Table 2 Cross Analysis Process of Accident and Frequency Classification

SOJBB3_2019_v24n1_45_t0002.png 이미지

Table 3 Results of Cross Analysis Process of Accident and Frequency Classification

SOJBB3_2019_v24n1_45_t0003.png 이미지

Table 4 Results of Cross Analysis Process Accident Prone Sector and Work Tasks

SOJBB3_2019_v24n1_45_t0004.png 이미지

Table 5 Results of Cross Analysis Process Accident Prone Sector and Original Cause Materials (OCM)

SOJBB3_2019_v24n1_45_t0005.png 이미지

Table 6 Results of Cross Analysis Process Accident Prone Sector and Assailing Materials (AS)

SOJBB3_2019_v24n1_45_t0006.png 이미지

Table 7 Results of Chi-Square Test of Independence (Summary)

SOJBB3_2019_v24n1_45_t0007.png 이미지

Table 8 Results of Contingency Coefficient

SOJBB3_2019_v24n1_45_t0008.png 이미지

References

  1. Ministry of Employment and Labor. Analysis of Industrial Accident Status. Ministry of Employment and Labor, 2017.
  2. Lee, S. H., Safety Accidents of Construction Machinery Workers, Blame for the "Original Responsibility" Law should be Revised. Worknworld, 2018.
  3. Kim, T. W., "A Study on Effectiveness of Safety Consciousness and Risk Assessment System on Construction Industrial Accidents," Graduate School of Jungwon University, 2018.
  4. Jo, J. H., "A Study on the Causes Analysis and Preventive Measures by Disaster types in Construction Fields," Journal of Korea Safety Management & Science, Vol. 14, No. 1, pp. 7-13, 2012. https://doi.org/10.12812/ksms.2012.14.1.007
  5. Su, S. S., Bok, B. Y., Bong, H. H., Kang, K. S., "Crash of a Small Construction Site Accident Analysis and Risk Assessment Study - Focusing on Project Value of Less than 20 Billion Small Construction Sites -," Journal of Korea Safety Management & Science. Vol. 16, No. 4, pp. 41-51, 2014. https://doi.org/10.12812/ksms.2014.16.4.41
  6. Go, S. S., Song, H., and Lee, H. M., "Development of the Safety Information Management System according to the Risk Index for the Building Construction Work," Architectural Institute of Korea, Vol. 21, No. 6, pp. 113-120, 2005.
  7. Son, K, S., Gal, W. M., Choi, J. N., and Song, I. Y., "Countermeasures for Safety Management in Subcontractor Work at Construction Site using AHP Technique," Journal of the Korean Society of Safety, Vol. 26, No. 1, pp. 27-35, 2011. https://doi.org/10.14346/JKOSOS.2011.26.1.027
  8. Korea Occupational Safety & Health Agency. Guideline for Recording and Classifying Industrial Accidents. Korea Occupational Safety & Health Agency, 2016.
  9. Kim, H. J., Lee, T. H., Ryu, S. E., and Kim, N. R., "A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis," Journal of the Korea Industrial Information Systems Research, Vol. 23, No. 3, pp. 13-23, 2018. https://doi.org/10.9723/JKSIIS.2018.23.3.013
  10. Kang, S. J., "Constructing a Large Interlinked Ontology Network for the Web of Data," Journal of the Korea Industrial Information Systems Research, Vol. 15, No. 1, pp. 15-23, 2010.
  11. Son, K. S., Gal, W. M., Song, I. Y., and Choi, J. N., "Formulation for Producing Risk Level of Each Construction Work," Journal of Korea Safety Management & Science, Vol. 26, No. 1, pp. 13-19, 2010.
  12. Jung, S. H., Lee, G. H., An, K. I., Lim, S. I., and Kang, K. S., "A Study on The Situation of Disasters and Characters of Technical Construction Firms," Journal of Korea Safety Management and Science, Vol. 11, No. 4, pp. 93-109, 2009.
  13. Korean Society of Civil Engineers. A Study on the Development of Risk Profile for Construction Projects. Ministry of Land, Infrastructure, and Transport, 2014.
  14. E-practical affairs(http://guide.kosha.or.kr). Korea Occupational Safety & Health Agency.
  15. Lee, H. S., Lim, H. J., and Jae, J. H., 2013.
  16. Dongguk University. 2018. Analysis of Construction Accident Data for Deduction (insurance) Business. Korea Specialty Contractor Financial Cooperative.