DOI QR코드

DOI QR Code

Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method

동적 상분리법을 이용한 이방성 도토리형상 입자 제조

  • Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Baek, Il-hyun (Green gas Research centerKorea Institute of Energy Research (KIER))
  • 박철호 (한국에너지기술연구원 제주글로벌연구센터) ;
  • 백일현 (한국에너지기술연구원 온실가스연구실)
  • Received : 2019.02.12
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

Anisotropic particles have been issued in various fields due to their unique physical properties. Herein, a novel dynamic phase separation method (DPS) is introduced to fabricate anisotropic acorn-like nanoparticles. DPS consists of two dynamic conditions; solvent evaporation and nonsolvent induced precipitation. The bottom layer is controlled by feeding the water as a non-solvent diluent, and the phase separation of the upper layer relies on the diffusion and evaporation of a volatile good solvent. At this condition, the acorn-like particles were fabricated. Under a closed box filled with water (spontaneous phase separation), monodisperse polystyrene (PS) particles were synthesized. At the coexistence between DPS and spontaneous phase separation, the sizes of cap and particle were changed. Also, the volume of PS solutions influences on the particle shape. Since the unique structures could be utilized into various applications, if advanced techniques such as membrane-based controlled water feeding is developed, monodisperse acorn-like particles could be tuned.

이방성 입자는 독특한 물리적 특성 때문에 다양한 분야에서 발표되고 있다. 여기서, 이방성 도토리구조 나노 입자를 제조하기 위해 새로운 동적 상분리 방법이 도입된다. 동적 상분리 방법은 용제 증발 및 무용제에 의한 침전으로 구성된다. 하부층은 비용매 희석제로서 물을 공급함으로써 제어되며, 상부층의 상분리는 휘발성 용매의 확산 및 증발에 의존한다. 이 상태에서, 도토리 형 입자가 제조되었다. 물이 채워진 밀폐된 상자(자발적 상분리)하에서, 단분산 폴리스틸렌 입자가 합성되었다. 동적 상분리와 자발적 상분리가 공존할 때, 캡과 입자의 크기가 변경되었다. 또한, 폴리스틸렌 용액의 부피는 입자 형상에 영향을 미친다. 독특한 구조가 다양한 응용 분야에 활용될 수 있기 때문에 멤브레인 기반의 제어된 물 공급과 같은 첨단 기술이 개발되면 단분산의 도토리와 같은 입자가 제조될 수 있을 것이다.

Keywords

References

  1. H. Yue and G. Ma, "Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications", Vaccine, 33, 5927 (2015). https://doi.org/10.1016/j.vaccine.2015.07.100
  2. G. Paramasivam, N. Kayambu, A. M. Rabel, A. K. Sundramoorthy, and A. Sundaramurthy, "Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bio-imaging, drug delivery and theranostics", Acta Biomaterialia, 49, 45 (2017). https://doi.org/10.1016/j.actbio.2016.11.066
  3. L. C. Bradley, W.-H. Chen, and D. Lee, in Anisotropic Particle Assemblies, N. Wu, D. Lee, and A. Striolo, Eds., Elsevier, Amsterdam, 201-231 (2018).
  4. R. Deng, S. Liu, F. Liang, K. Wang, J. Zhu, and Z. Yang, "Polymeric janus particles with hierarchical structures", Macromolecules, 47, 3701 (2014). https://doi.org/10.1021/ma500331w
  5. C. H. Park, N.-o. Chung, and J. Lee, "Monodisperse red blood cell-like particles via consolidation of charged droplets", J. Coll. Interf. Sci., 361, 423 (2011). https://doi.org/10.1016/j.jcis.2011.06.003
  6. Q. Zhang, S. Ghosh, S. Samitsu, X. Peng, and I. Ichinose, "Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles", J. Mater. Chem., 21, 1684 (2011). https://doi.org/10.1039/C0JM03334K
  7. W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, "Industrial applications of nanoparticles", Chem. Soc. Rev., 44, 5793 (2015). https://doi.org/10.1039/C4CS00362D
  8. S. Chen, S. Gao, J. Jing, and Q. Lu, "Designing 3D biological surfaces via the breath-figure method", Adv. Health. Mat., 7, 1701043 (2018). https://doi.org/10.1002/adhm.201701043
  9. P. Marchetti, M. Mechelhoff, and A. G. Livingston, "Tunable-porosity membranes from discrete nanoparticles", Sci. Reports, 5, 17353 (2015). https://doi.org/10.1038/srep17353
  10. P. Chul Ho, "Change of surface morphology with the spreading rate of organic solution during interfacial polymerization for polyamide-based thin film composite membrane manufacturing process", Membr. J., 27, 506 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.506
  11. C. H. Park, H. Bae, W. Choi, K. Lee, D.-g. Oh, J. Lee, and J.-H. Lee, "Thin film composite membrane prepared by interfacial polymerization as an ion exchange membrane for salinity gradient power", J. Indus. Eng. Chem., 59, 362 (2018). https://doi.org/10.1016/j.jiec.2017.10.044
  12. C. H. Park, H. Bae, S. J. Kwak, M. S. Jang, J.-H. Lee, and J. Lee, "Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance", Macromol. Res., 24, 314 (2016). https://doi.org/10.1007/s13233-016-4044-2
  13. I. Lesov, Z. Valkova, E. Vassileva, G. S. Georgiev, K. Ruseva, M. Simeonov, S. Tcholakova, N. D. Denkov, and S. K. Smoukov, "Bottom-up synthesis of polymeric micro- and nanoparticles with regular anisotropic shapes", Macromol., 51, 7456 (2018). https://doi.org/10.1021/acs.macromol.8b00529
  14. T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, "Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles", Langmuir, 26, 13086 (2010). https://doi.org/10.1021/la903890h
  15. C. H. Park and J. Lee, "Electrosprayed polymer particles: Effect of the solvent properties", J. Appl. Poly. Sci., 114, 430 (2009). https://doi.org/10.1002/app.30498
  16. A. G. Luque-Alcaraz, J. Lizardi-Mendoza, F. M. Goycoolea, I. Higuera-Ciapara, and W. Arguelles-Monal, "Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier", RSC Adv., 6, 59250 (2016). https://doi.org/10.1039/C6RA06563E
  17. H. Yabu, T. Higuchi, K. Ijiro, and M. Shimomura, "Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process", Chaos: An Interdisciplinary J. Nonlinear Sci., 15, 047505 (2005). https://doi.org/10.1063/1.2137621
  18. H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, and H. Jinnai, "Polymer janus particles containing block-copolymer stabilized magnetic nanoparticles", ACS Appl. Material. & Interf., 5, 3262 (2013). https://doi.org/10.1021/am4003149
  19. T. Higuchi, A. Tajima, H. Yabu, and M. Shimomura, "Spontaneous formation of polymer nanoparticles with inner micro-phase separation structures", Soft Matter, 4, 1302 (2008). https://doi.org/10.1039/b800904j
  20. M. Cui, T. Emrick, and T. P. Russell, "Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles", Science, 342, 460 (2013). https://doi.org/10.1126/science.1242852