Fig. 1. KNIME workflow for logistic regression model development
Fig. 2. KNIME Workflow for Decision Tree model development
Fig. 3. Severity-adjusted mortality rate model for AMI patients using desicion tree
Fig. 4. KNIME workflow for neural network model development
Fig. 5. KNIME workflow for support vector machine model development
Table 1. General characteristics of acute stroke inpatients
Table 2. Distribution of CCI
Table 3. Distribution of CCI
Table 4. Distribution of comorbidity disease by ECI
Table 5. Distribution of comorbidity disease by CCS category
Table 6. Logistic regression model assessment using AUC
Table 7. Severity-adjusted mortality rate model for acute stroke patients using logistic regression
Table 8. Decision tree model assessment using AUC
Table 9. Neural network model assessment using AUC
Table 10. Support vector machine model assessment using AUC
References
- J. H. Park, Y. M. Kim, S. S. Kim, W. J. Kim & S. H. Kang. (2012). Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data. Journal of the Korea Academia-Industrial cooperation Society, 13(4), 1739-1750. DOI : 10.5762/KAIS.2012.13.4.1739
- J. H. Lim & J. Y. Park. (2011). The impact of comorbidity (the Charlson Comorbidity Index) on the health outcomes of patients with the acute myocardial infarction(AMI). Korean J. of Health Policy & Administration, 21(4), 541-564. DOI : 10.4332/KJHPA.2011.21.4.541
- S. J. Kim, S. H. Kang, W. J. Kim & Y. M. Kim. (2011). The Variation Factors of Severity- Adjusted Length of Stay in CABG. Journal of the Korean Society for Quality Management, 39(3), 391-399. DOI : 10.7469/JKSQM.2011.39.3.391
- T. K. Chung & S. H. Kang. (2013). The Comparison of Risk-adjusted Mortality Rate between Korea and United States. The Journal of Digital Policy & Management, 11(5), 371-384. DOI : 10.14400/JDPM.2013.11.5.371
- S. O. Hong, Y. T. Kim, J. H. Park & S. H. Kang. (2015). The Variation of Factors of Severity- Adjusted Length of Stay (LOS) in Injury of Neck. Health and Social Welfare Review, 35(2), 561-583. DOI : 10.15709/hswr.2015.35.2.561
- W. J. Kim, S. S. Kim, E. J. Kim & S. H. Kang. (2013). Severity-Adjusted LOS Model of AMI patients based on the Korean National Hospital Discharge in-depth Injury Survey Data. Journal of the Korea Academia-Industrial cooperation Society, 14(10), 4910-4918. DOI : 10.5762/KAIS.2013.14.10.4910
- J. H. Lim & M. H. Nam. (2012). Development of Mortality Model of Severity-Adjustment Method of AMI Patients. Journal of the Korea Academia-Industrial cooperation Society, 13(6), 2672-2679. DOI : 10.5762/KAIS.2012.13.6.2672
- S. K. Jin & M. S. Bang. (2018). The Challenges of Public Policy Management for the 4th Industrial Revolution. Journal of Digital Convergence, 16(4), 39-47. DOI : 10.14400/JDC.2018.16.4.039
- K. Y. Lee & J. H. Kim. (2016). Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field. Korean Medical Education Review, 18(2), 51-57. DOI : 10.17496/kmer.2016.18.2.51
- B. K. Choi, S. W. Ham, C. H. Kim, J. S. Seo, M. H. Park & S. H. Kang. (2018). Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence. Journal of Digital Convergence, 16(1), 231-242. DOI : 10.14400/kmer.2018.16.1.231
- X. Cai, O. Perez-Concha, E. Coiera, F. Martin-Sanchez, R. Day, D. Roffe & B. Gallego (2016). Real-time prediction of mortality, readmission, and length of stay using electronic health record data. J Am Med Inform Assoc, 23, 553-561. DOI : 10.1093/jamia/ocv110
- A. Awada, M. Bader-El-Dena, J. McNicholasa & J. Briggsa. (2017). Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. International Journal of Medical Informatics, 108, 185-195. DOI : 10.1016/j.ijmedinf.2017.10.002
- H. Nilsaz-Dezfouli, M. R. Abu-Bakar, J. Arasan, M. B. Adam & M. A. Pourhoseingholi. (2017). Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models. Cancer Informatics, 16, 1-11. DOI: 10.1177/1176935116686062
- Statistics Korea. (2017). cause of death statistics 2016. Statistics Korea Homepage. http://kostat. go.kr/portal/korea/kor_nw/2/6/1/index.board?bmode=read&aSeq=363268
- E. J. Han & J. S. Kim. (2015). Effects of Symptom Recognition and Health Behavior Compliance on Hospital Arrival Time in Patients with Acute Myocardial Infarction. Korean Journal of Adult Nursing, 27(1), 83-93. DOI : 10.7475/kjan.2015.27.1.83
- S. O. Hong, Y. T. Kim, Y. H. Choi, J. H. Park & S. H. Kang. (2015). Development of severity- adjusted length of stay in knee replacement surgery. Journal of Digital Convergence, 13(2), 215-225. DOI : 10.14400/JDC.2015.13.2.215
- H. H. Lee, S. H. Chung & E. J. Choi. (2016). A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm. Journal of Digital Convergence, 14(2), 245-258. DOI : 10.14400/JDC.2016.14.2.245
- K. Y. Lee & J. H. Kim. (2016). Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field. Korean Medical Education Review, 18(2), 51-57. DOI : 10.17496/kmer.2016.18.2.51
- M. A. Oh et. al. (2017). A Study on Social security Big Data Analysis and Prediction Model based on Machine Learning. Korea Institute for Health and Social Affairs Publishing. https://www.kihasa.re.kr/common/fi ledown.do?seq=39848
- H. H. Kim, S. B. Yang, Y. S. Kang, Y. B. Park & J. H. Kim. (2016). Machine Learning Approach to Blood Stasis Pattern Identification Based on Self-reported Symptoms. Korean Journal of Acupuncture, 33(3), 102-113. DOI : 10.14406/acu.2016.011
- I. S. Park, W. S. Yong, Y. M. Kim, S. H. Kang & J. T. Han. (2008). A Development of a Tailored Follow up Management Model Using the Data Mining Technique on Hypertension. The Korean journal of applied statistics, 21(4), 639-647. DOI : 10.5351/kjas.2008.21.4.639
- D. Y. Choi, K. M. Jeong & D. H. Lim. (2018). Breast Cancer Classification using Deep Learning-based Ensemble. Journal of Health Informatics and Statistics, 43(2), 140-147. DOI : 10.21032/jhis.2018.43.2.140