DOI QR코드

DOI QR Code

국가 정책에 대한 언론과 SNS 반응의 감성 분석 연구 -아동 수당, 출산 장려금 정책을 중심으로-

A Study on Sentiment Analysis of Media and SNS response to National Policy: focusing on policy of Child allowance, Childbirth grant

  • 윤혜민 (서울여자대학교 정보보호학과) ;
  • 최은정 (서울여자대학교 정보보호학과)
  • Yun, Hye Min (Department of Information Security, Seoul Women's University) ;
  • Choi, Eun Jung (Department of Information Security, Seoul Women's University)
  • 투고 : 2018.12.31
  • 심사 : 2019.02.20
  • 발행 : 2019.02.28

초록

스마트폰, 태블릿 등의 이동 통신 기기와 PC 이용이 확장됨에 따라 인터넷 상에서 데이터가 기하급수적으로 수집되고 있다. 또한 SNS의 발전으로 인해 이용자 간의 자유로운 의사소통과 여러 분야의 정보를 공유할 수 있어 다양한 다량의 의견들이 빅데이터 형태로 쌓이고 있다. 이에 따라 빅데이터 분석 기법을 사용하여 일반 사람들의 반응과 언론사의 뉴스 기사 반응의 차이를 알아보는 기법이 대두되고 있다. 본 논문에서는 아동 수당과 출산 장려금에 대해 SNS에서 나타난 대중들의 반응과 언론사의 반응을 분석하였다. 이를 위해 일정 기간 동안 트위터에 올라온 이용자들의 글을 수집하고 뉴스 기사를 크롤링하여 감성 분석을 진행하였다. 이를 통해 SNS에 나타나는 대중의 의견과 언론사 뉴스의 반응을 비교하여 대중과 언론이 국가 정책에 대한 반응의 차이를 비교 분석하였다.

Nowadays as the use of mobile communication devices such as smart phones and tablets and the use of Computer is expanded, data is being collected exponentially on the Internet. In addition, due to the development of SNS, users can freely communicate with each other and share information in various fields, so various opinions are accumulated in the from of big data. Accordingly, big data analysis techniques are being used to find out the difference between the response of the general public and the response of the media. In this paper, we analyzed the public response in SNS about child allowance and childbirth grant and analyzed the response of the media. Therefore we gathered articles and comments of users which were posted on Twitter for a certain period of time and crawling the news articles and applied sentiment analysis. From these data, we compared the opinion of the public posted on SNS with the response of the media expressed in news articles. As a result, we found that there is a different response to some national policy between the public and the media.

키워드

DJTJBT_2019_v17n2_195_f0001.png 이미지

Fig. 1. Flow of Web Crawling

DJTJBT_2019_v17n2_195_f0002.png 이미지

Fig. 2. Flow of Sentiment Analysis

DJTJBT_2019_v17n2_195_f0003.png 이미지

Fig. 3. Result I of Sentiment Analysis

DJTJBT_2019_v17n2_195_f0004.png 이미지

Fig. 4. Result II of Sentiment Analysis

DJTJBT_2019_v17n2_195_f0005.png 이미지

Fig. 5. Result I of Comparative Analysis

DJTJBT_2019_v17n2_195_f0006.png 이미지

Fig. 6. Result III of Sentiment Analysis

DJTJBT_2019_v17n2_195_f0007.png 이미지

Fig. 7. Result IV of Sentiment Analysis

DJTJBT_2019_v17n2_195_f0008.png 이미지

Fig. 8. Result II of Comparative Analysis

참고문헌

  1. S. M. Ko, B. H. Hwang & Y. G. Ji. (2010). A Study on Social Network Service and Online Social Capital : Focusing on a Korean and Chinese Case, The Journal of Society for e-Business Studies, 15(1), 103-118.
  2. Y. N. Lee, E. J. Choi & M. J. Kim. (2018). Analysis of the Influence of Presidential Candidate's SNS Reputation on Election Result: focusing on 19th Presidential Election, Journal of Digital Convergence, 16(2), 195-201. https://doi.org/10.14400/JDC.2018.16.2.195
  3. E. J. Choi, S. W. Choi, S. Y. Lee & M. J. Kim. (2017). Analysis of the effect of the mention in SNS on the result of election, Journal of Digital Convergence, 15(2), 191-197. https://doi.org/10.14400/JDC.2017.15.2.191
  4. G. H. Kim. (2014). An analysis of Courts; Decisions on Freedom of Expression on Social Network Services: Focusing on Twitter and Facebook Cases, Press and Law, 13(2), 165-190.
  5. S. lyengar & R. Reeves. (1997). Do the Media Govern? Politicians, Voters and Reporters in America, Electoral Studies.
  6. S. H. Kim & J. W. Lee. (2016). Naver's influence on the public opinion, ahead of KBS . Chosun, Journalists Association of Korea, http://www.journalist.or.kr/news/article.html?no=38363
  7. Gerbaudo, Paolo. (2018). Tweets and the streets: Social media and contemporary activism. Pluto Press.
  8. A. Lavallee. (2007). Friends swap twitters, and frustrationnew real-time messaging services overwhelm some users with mundane updates from friends. Wall Street Journal.
  9. Barack Obama, https://twitter.com/barackobama
  10. S. I. Lee. 'Advertising' Naver vs 'Content' Cacao ... Naver is in the lead, Energy Economic News. http://www.ekn.kr/news/article.html?no=266715
  11. J. J. Lee & Y. M. Sang. (2008). A Study on the Remedies of Infringement of Personal Rights by Portal News Service. Korean Journal of International Communication, 37-83.
  12. M. Kobayashi & K. Takeda. (2000). "Information retrieval on the web", (ACM Press), 32(2), 144-173. https://doi.org/10.1145/358923.358934
  13. Google, Privacy and terms-Privacy policy, https://policies.google.com/privacy?hl=en.
  14. B. Pang & Lillian Lee. (2008). Opinion mining and sentiment analysis. Foundations and $Trends^{(R)}$ in Information, Retrieval, 21(1), 1-135.
  15. Liu, Bing & Lei Zhang. (2012). A survey of opinion mining and sentiment analysis. Mining text data. Springer, Boston, MA, 415-463.