Fig. 1. Word2vec
Fig. 2. Procedures
Table 1. Opinion mining studies
Table 2. BOW results
Table 3. WE results
참고문헌
- M. Kang, J. Ahn & K. Lee. (2018). Opinion mining using ensemble text hidden Markov models for text classification. Expert Systems with Applications, 94, 218-227. https://doi.org/10.1016/j.eswa.2017.07.019
- J. R. Pineiro-Chousa, M. A. Lopez-Cabarcos & A. M. Perez-Pico. (2016). Examining the influence of stock market variables on microblogging sentiment. Journal of Business Research, 69(6), 2087-2092. https://doi.org/10.1016/j.jbusres.2015.12.013
- A. Yadollahi, A. G. Shahraki & O. R. Zaiane. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys (CSUR), 50(2), 25.
- M. Y. Chen & T. H. Chen. (2017). Modeling public mood and emotion: Blog and news sentiment and socio-economic phenomena. Future Generation Computer Systems.
- T. Mikolov, K. Chen, G. Corrado & J. Dean. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- L. P. Ni, Z. W. Ni & Y. Z. Gao. (2011). Stock trend prediction based on fractal feature selection and support vector machine. Expert Systems with Applications, 38(5), 5569-5576. https://doi.org/10.1016/j.eswa.2010.10.079
- Y. Liu, J. W. Bi & Z. P. Fan. (2017). Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms. Expert Systems with Applications, 80, 323-339. https://doi.org/10.1016/j.eswa.2017.03.042
- F. Corea. (2016). Can Twitter Proxy the Investors' Sentiment? The Case for the Technology Sector. Big Data Research, 4, 70-74. https://doi.org/10.1016/j.bdr.2016.05.001
- Y. Ruan, A. Durresi & L. Alfantoukh. (2018). Using Twitter trust network for stock market analysis. Knowledge-Based Systems, 145, 207-218. https://doi.org/10.1016/j.knosys.2018.01.016
- M. Ghiassi, J. Skinner & D. Zimbra. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with applications, 40(16), 6266-6282. https://doi.org/10.1016/j.eswa.2013.05.057
- N. F. Da Silva, E. R. Hruschka & E. R. Hruschka Jr. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179. https://doi.org/10.1016/j.dss.2014.07.003
- G. Wang, J. Sun, J. Ma, K. Xu & J. Gu. (2014). Sentiment classification: The contribution of ensemble learning. Decision support systems, 57, 77-93. https://doi.org/10.1016/j.dss.2013.08.002
- S. Yoo, J. Song & O. Jeong. (2018). Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, 102-111. https://doi.org/10.1016/j.eswa.2018.03.055
- A. Garcia-Pablos, M. Cuadros & G. Rigau. (2018). W2vlda: almost unsupervised system for aspect based sentiment analysis. Expert Systems with Applications, 91, 127-137. https://doi.org/10.1016/j.eswa.2017.08.049
- S. Menard. (2002). Applied logistic regression analysis, 106, Sage.
- R. J. Schalkoff. Artificial neural networks, 1, New York: McGraw-Hill.
- N. Friedman, D. Geiger & M. Goldszmidt. (1997). Bayesian network classifiers. Machine learning, 29(2-3), 131-163. https://doi.org/10.1023/A:1007465528199
- L. Breiman. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- T. K. Ho. (1998). The Random Subspace Method for Constructing Decision Forests, IEEE Trans. Pattern Analysis and Machine Intelligence, 20(8), 832-844. https://doi.org/10.1109/34.709601
- D. H. Wolpert. (1992). Stacked generalization. Neural networks, 5(2), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
- J. Blitzer, M. Dredze & F. Pereira. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the association of computational linguistics, (pp. 440-447).
- S. Poria, E. Cambria & A. Gelbukh. (2016). Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 108, 42-49. https://doi.org/10.1016/j.knosys.2016.06.009