Fig. 2. Ray paths between epicenters and stations for (a) Rayleigh waves and (b) Love waves. Red circles and blue triangles indicate the locations of epicenters and stations, respectively.
Fig. 3. Group velocity dispersion curves for (a) Rayleigh waves and (b) Love waves with a period range from 5 to 140 s.
Fig. 4. The depth slices of SV-wave velocity perturbations from checkerboard tests. The input checkerboard models consist of 400 km × 400 km squared anomalies with amplitudes of ± 300 m/s as shown in (a). The other panels show inversion results at (b) 10, (c) 20, (d) 30, (e) 40, (f) 50 and (g) 60 km. Regions not covered by data sets are indicated in gray.
Fig. 5. The depth slices of SH-wave velocity perturbations from checkerboard tests. The input checkerboard models consist of 400 km × 400 km squared anomalies with amplitudes of ± 300 m/s as shown in (a). The other panels show inversion results at (b) 10, (c) 20, (d) 30, (e) 40, (f) 50 and (g) 60 km. Regions not covered by data sets are indicated in gray.
Fig. 6. The depth slices of SV-wave velocity model at (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60 km. Regions not covered by data sets are indicated in gray.
Fig. 7. The depth slices of SH-wave velocity model at (a) 10, (b)20, (c) 30, (d) 40, (e) 50 and (f) 60 km. Regions not covered by data sets are indicated in gray.
Fig. 8. Radial anisotropy at (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60 km. Most of the Arabian Peninsula is dominated by positive anisotropy. Regions not covered by data sets are in dicatedin gray.
Fig. 1. (a) Map of the study area. The red lines indicate plate boundaries and the dashed line represents the boundary between the Arabian shield and the Arabian platform. The black arrows indicate the direction of absolute plate motions (ArRajehi et al., 2010). Stations, volcanoes and volcanic field are indicated by blue squares, red triangles and orange areas, respectively. (b) Distribution of events. The blue triangle is the center point of our model and red circles indicate events.
참고문헌
- ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan, L., 2010, Geodetic constraints on present-day motion of the Arabian plate: Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011, doi:10.1029/2009TC002482.
- Bath, M., 1974, Spectral Analysis in Geophysics, Elsevier, 580.
- Baumgardner, J. R., and Frederickson, P. O., 1985, Icosahedral Discretization of the Two-Sphere, SIAM J. Numer. Anal., 22(6), 1107-1115. https://doi.org/10.1137/0722066
- Bosworth, W., Huchon, P., and McClay, K., 2005, The Red Sea and Gulf of Aden Basins, J. Afr. Earth Sci., 43, 334-378. https://doi.org/10.1016/j.jafrearsci.2005.07.020
- Brigham, E. O., 1988, The fast Fourier Transform and its applications, Prentice Hall, 448.
- Brown, G. F., 1972, Tectonic Map of the Arabian Peninsula, US Geological Survey.
- Camp, V. E., and Roobol, M. J., 1992, Upwelling asthenosphere beneath western Arabia and its regional implications, J. Geophys. Res., 97, 15255-15271. https://doi.org/10.1029/92JB00943
- Chang, S. J., Merino, M., Van der Lee, S., Stein, S., and Stein, C. A., 2011, Mantle flow beneath Arabia offset from the opening Red Sea, Geophys. Res. Lett., 38(4), L04301, doi:10.1029/2010GL045852.
- Chang, S. J., and Van der Lee, S., 2011, Mantle plumes and associated flow beneath Arabia and East Africa, Earth Planet. Sci. Lett., 302, 448-454. https://doi.org/10.1016/j.epsl.2010.12.050
- Coleman, R. G., 1977, Ophiolites: Ancient Oceanic Lithosphere? Springer-Verlag, 229.
- Dziewonski, A., Bloch, S., and Landisman, M., 1969, Technique for the analysis of transient seismic signals, Bull. Seis. Soc. Am., 59(1), 427-444. https://doi.org/10.1785/BSSA0590010427
- Falcon N., 1974. Southern Iran: Zagros Mountains. In: Spencer, A., Ed., Mesozoic-Cenozoic Orogenic Belts, 4, Geol. Soc. Spec. Publ. 199-211. https://doi.org/10.1144/GSL.SP.2005.004.01.11
- Garfunkel, Z., and Beyth, M., 2006, Constraints on the structural development of Afar imposed by kinematics of the major surrounding plates, Geol. Soc. Spec. Publ., 259, 23-42. https://doi.org/10.1144/GSL.SP.2006.259.01.04
- Herrmann, R. B., and Ammon, C. J., 2002, Computer Programs in Seismology, Version 3.30, Saint Louis University, St. Lousis, Missouri.
- Kennett, B. L. N., Sambridge, M. S., and Williamson, P. R., 1988, Subspace methods for large inverse problems with multiple parameter classes, Geophys. J. Int., 94(2), 237-247. https://doi.org/10.1111/j.1365-246X.1988.tb05898.x
- Koulakov, I., Burov, E., Cloetingh, S., El Khrepy, S., Al-Arifi, N., and Bushenkova, N., 2016, Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion, Tectonophysics, 667, 176-188. https://doi.org/10.1016/j.tecto.2015.11.022
- McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., and Tealeb, A., 2003, GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 155, 126-138. https://doi.org/10.1046/j.1365-246X.2003.02023.x
- Sepehr, M., and Cosgrove, J. W., 2004, Structural framework of the Zagros fold-thrust belt, Iran, Mar. Pet. Geol., 21(7), 829-843. https://doi.org/10.1016/j.marpetgeo.2003.07.006
- Stocklin, J., 1968, Structural history and tectonics of Iran: a review, Am. Assoc. Pet. Geol. Bull., 52(7), 1229-1258.
- Stoeser, D. B., and Camp, V. E., 1985, Pan-African Microplate Accretion of the Arabian Shield, Geol. Soc. Am. Bull., 96(7), 817-826. https://doi.org/10.1130/0016-7606(1985)96<817:PMAOTA>2.0.CO;2
- Tang, Z., Julia, J., Zahran, H., and Mai, P. M., 2016, The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield, Tectonophysics, 680, 8-27. https://doi.org/10.1016/j.tecto.2016.05.004
- Tang, Z., Mai, P. M., Chang, S. J., and Zahran, H., 2018, Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography, Earth Planet. Sci. Lett., 495, 24-37. https://doi.org/10.1016/j.epsl.2018.05.011