DOI QR코드

DOI QR Code

Acaricidal and antibacterial toxicities of Valeriana officinalis oils obtained by steam distillation extraction

수증기 증류 추출법에 의해 얻어진 미국산 길초근 정유의 살비효과 및 항균효과

  • Choi, Seon-A (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Lee, Hoi-Seon (Department of Bioenvironmental Chemistry, Chonbuk National University)
  • Received : 2018.12.03
  • Accepted : 2018.12.07
  • Published : 2019.03.31

Abstract

The chemical compositions of the essential oil of Valeriana officinalis roots obtained by steam distillation method were analyzed by GC-MS. The 16 constituents were identified in the V. officinalis oil, and the most abundant compounds were patchouli alcohol (18.69%) and ${\beta}$-gurjunene (15.26%). Acaricidal effects of the V. officinalis oil were evaluated against Tyrophagus putrescentiae, Haemaphysalis longicornis larva and H. longicornis nymph by contact bioassay. The $LD_{50}$ values against T. putrescentiae, H. longicornis larva and H. longicornis nymph were 28.01, 178.26 and $207.98{\mu}g/cm^2$, respectively. Agar disc diffusion bioassay showed the antibacterial activity of the V. officinalis oil against foodborne pathogens, especially L. monocytogenes. These results showed that the essential oil of V. officinalis roots derived from USA has a potential for development as acaricide and antimicrobial.

수증기증류 추출법에 의한 미국산 길초근(Valeriana officinalis)의 구성성분을 알아보기 위해 GC-MS 분석을 수행한 결과, 주요 성분이 patchouli alcohol (18.69%) 및 ${\beta}$-gurjunene (15.26%)인 것으로 나타났다. 그리고 길초근 정유의 살비활성 및 항균활성을 알아보기 위해 작은소피참진드기 및 긴털가루응애에 대하여 접촉독성법을 실시하였고, 식중독균 8 종에 대하여 agar disc diffusion법을 실시하였다. 그 결과, 긴털가루응애 성충에 대하여 $28.01{\mu}g/cm^2$$LD_{50}$값을 나타내었으며, 작은소피참진드기 유충 및 약충에 대하여 각각 178.26 및 $207.98{\mu}g/cm^2$$LD_{50}$ 값을 나타내었다. 또한 식중독균은 8종 균주에 대하여 항균활성을 나타내었으며, 특히 L.monocytogenes에 대하여 우수한 항균활성을 나타내었다. 따라서 본 연구를 통해 수증기증류 추출법에 의한 길초근 정유가 살비제 및 항생제로서의 가치가 있음을 확인하였다.

Keywords

References

  1. McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367: 859-869 https://doi.org/10.1016/S0140-6736(06)68079-3
  2. Colborn T, Vom Saal FS, Soto AM (2000) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101: 378-384 https://doi.org/10.1289/ehp.93101378
  3. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45: 371-391 https://doi.org/10.1146/annurev.ento.45.1.371
  4. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6: 1720-1731 https://doi.org/10.4161/psb.6.11.17613
  5. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Frag J 23: 213-226 https://doi.org/10.1002/ffj.1875
  6. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C-Toxicol Pharmacol 130: 325-337 https://doi.org/10.1016/S1532-0456(01)00255-1
  7. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75: 225-233 https://doi.org/10.1007/BF00303957
  8. Boldbaatar D, Sikasunge CS, Battsetseg B, Xuan X, Fujisaki K (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochemistry and Molecular Biology 36: 25-36 https://doi.org/10.1016/j.ibmb.2005.10.003
  9. Kim KH, Yi JY, Kim GY, Choi SJ, Jun KI, Kim NH, Choe PG, Kim NJ, Lee JK, Oh MD (2013) Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis 19: 1892-1894
  10. Hughes AM (1976) The Mites of Stored Food and Houses. H. M. S. O., London
  11. Heide S, Niemeijer NR, Hovenga H, Monchy JGR, Dubois AEJ, Kauffman HF (1998) Prevalence of sensitization to the storage mites Acarus siro, Tyrophagus putrescentiae, and Lepidoglyphus destructor in allergic patients with different degrees of sensitization to the housedust mite Dermatophagoides pteronyssinus. Allergy 53: 426-430 https://doi.org/10.1111/j.1398-9995.1998.tb03917.x
  12. Collins DA (2006) A review of alternatives to organophosphorus compounds for the control of storage mites. J Stored Prod Res 42: 395-426 https://doi.org/10.1016/j.jspr.2005.08.001
  13. Lee CH, Sung BK, Lee HS (2006) Acaricidal activity of fennel seed oils and their main components against Tyrophagus putrescentiae, a storedfood mite. J Stored Prod Res 42: 8-14 https://doi.org/10.1016/j.jspr.2004.10.004
  14. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, Giessen J, Kruse H (2010) Food-borne diseases-The challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139: S3-S15 https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  15. Chung JK, Lee JC, Ha DR (2014) Antimicrobial Activities of Sword Bean (Canavalia gladiata) Extracts against Food Poisoning Bacteria. J Food Hyg Saf 29: 376-382 https://doi.org/10.13103/JFHS.2014.29.4.376
  16. Bos R, Hendriks H, Scheffer JJC, Woerdenbag HJ (1998) Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine 5: 219-225 https://doi.org/10.1016/S0944-7113(98)80032-9
  17. Leuschner J, Muller J, Rudmann M (1993) Characterisation of the central nervous depressant activity of a commercially available valerian root extract. Arzneimittelforschung 43: 638-641
  18. Leathwood PD, Chauffard F, Heck E, Munoz-Box R (1982) Aqueous extract of valerian root (Valeriana officinalis L.) improves sleep quality in man. Pharmacol Biochem Behav 17: 65-71 https://doi.org/10.1016/0091-3057(82)90264-7
  19. Mejlon HA, Jaenson TGT (1993) Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand J Infect Dis 25: 449-456 https://doi.org/10.3109/00365549309008526
  20. Yamaguti N, Tipton VJ, Keegan HI, Toshioka S (1971) Ticks of Japan, Korea and the Ryukyu Islands. Brigham Young Univ Sci Bull 15:1-226 https://doi.org/10.5962/bhl.part.25691
  21. Yang JY, Kim MG, Park JH, Hong ST, Lee HS (2014) Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator. Sci rep 4: 7149-7155 https://doi.org/10.1038/srep07149
  22. Wang J, Zhao J, Liu H, Zhou L, Liu Z, Wang J, Han J, Yu Z, Yang F (2010) Chemical Analysis and Biological Activity of the Essential Oils of Two Valerianaceous Species from China: Nardostachys chinensis and Valeriana officinalis. Molecules 15: 6411-6422 https://doi.org/10.3390/molecules15096411
  23. Pavlovic M, Kovacevic N, Tzakou O, Couladis M (2004) The Essential Oil of Valeriana officinalis L. s.l. Growing Wild in Western Serbia. J. Essent Oil Res 16: 397-399 https://doi.org/10.1080/10412905.2004.9698753
  24. Huang B, Qin L, Chu Q, Zhang Q, Gao L, Zheng H (2008) Comparison of Headspace SPME with Hydrodistillation and SFE for Analysis of the Volatile Components of the Roots of Valeriana officinalis var. latifolia. Chromatographia 69: 489-496 https://doi.org/10.1365/s10337-008-0921-y
  25. Maddonni GA, Urricariet S, Ghersa CM, Lavado RS (1999) Assessing soil quality in the Rolling Pampa, using soil properties and maize characteristics. Agron J 91: 280-287 https://doi.org/10.2134/agronj1999.00021962009100020017x
  26. Pavela R (2011) Screening of Eurasian plants for insecticidal and growth inhibition activity against Spodoptera littoralis larvae. Afr J Agric Res 6: 2895-2907
  27. Dua VK, Alam MF, Pandey AC, Rai S, Chopra AK, Kaul VK, Dash AP (2008) Insecticidal activity of Valeriana jatamansi (Valerianaceae) against mosquitoes. J Am Mosq Control Assoc 24: 315-318 https://doi.org/10.2987/5642.1
  28. Jeong EY, Lee MJ, Kang MS, Lee HS (2018) Antimicrobial agents of 4-methoxysalicylaldehyde isolated from Periploca sepium oil against foodborne bacteria: structure-activity relationship. Appl Biol Chem 61: 397-402 https://doi.org/10.1007/s13765-018-0373-5

Cited by

  1. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils vol.26, pp.11, 2019, https://doi.org/10.3390/molecules26113155