DOI QR코드

DOI QR Code

Biosynthesis of bioactive isokaemferide from naringenin in Escherichia coli

대장균에서 naringenin으로부터 생리활성 isokaemferide의 생합성

  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • Received : 2018.11.20
  • Accepted : 2018.11.28
  • Published : 2019.03.31

Abstract

The flavonoid, isokaempferide, has various biological activities such as hepatoprotective, antimicrobial and antiproliferative effect and is extracted from Amburana cearensis and Cirsium rivulare (Jacq.). Biotransformation is an alternative tool for the synthesis of value-added flavonoids with inexpensive substrates. Here, to synthesize isokaempferide from naringenin, two genes, PFLS and Rice O-mthyltransferae-9 were introduced in Escherichia coli. Although isokaempferide was successfully synthesized, the amount of biosynthesis was no high. In order to increase the yields of isokaempferide, S-adenosylmethionine (SAM) used as a methyl donor was increased by deleting MetJ, which is a transcriptional regulator related to SAM biosynthetic pathway. Next we optimized the cell concentration and substrate feed concentration with the engineered E. coli strain. Through these strategies, the biosynthesis of isokaempferide was increased up to 87 mg/L.

Flavonoid인 isokaempferide는 간 보호, 항균, 항증식성, 항염 등 다양한 생리활성을 가지는 것을 보고 되고 있으며 Amburana cearensis와 Cirsium rivulare (Jacq.)과 같은 식물에서 추출하여 사용한다. 생물전환은 비교적 값이 싼 물질로부터 고부가가치 물질을 얻기 위한 방법으로 유용물질의 식물추출법을 대체할 수 있는 방법이다. Naringenin으로부터 isokaempferide를 생합성 하기 위해 대장균에 포플러에서 분리한 PFLS와 벼에서 분리한 ROMT-9 유전자를 도입하였다. 이 균주를 이용하여 naringenin으로부터 isokaempferide의 생합성 수율(9.8 mg/L)은 낮았다. Isokaempferide의 생합성 수율을 높이기 위해 S-adenosylmethionine (SAM) 생합성 경로의 transcriptional regulator인 MetJ를 제거함으로써 methyl donor로 사용되는 SAM을 증가시켰다. SAM생합성 대사를 조절한 대장균을 이용하여 생물전환 균주의 최적 세포밀도 및 최적의 기질공급 농도를 결정하였다. 최적화된 조건을 이용하여 isokaempferide의 생합성은 87 mg/L까지 증가하였다.

Keywords

References

  1. Schmidt AW, Reddy KR, Knolker HJ (2012) Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev 112: 3193-3328 https://doi.org/10.1021/cr200447s
  2. Souza AB, Martins CH, Souza MG, Furtado NA, Heleno VC, de Sousa JP, Rocha EM, Bastos JK, Cunha WR, Veneziani RC, Ambrosio SR (2011) Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res 25: 215-220 https://doi.org/10.1002/ptr.3244
  3. Xiao J, Ni X, Kai G, Chen X (2013) A review on structure-activity relationship of dietary polyphenols inhibiting a-amylase. Crit Rev Food Sci Nutr 53: 497-506 https://doi.org/10.1080/10408398.2010.548108
  4. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotech J 2: 1214-1234 https://doi.org/10.1002/biot.200700084
  5. Mora-Pale M, Sanchez-Rodriguez SP, Linhatrdt RJ, Dordick JS, Koffas MAG (2013) Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci 210: 10-24 https://doi.org/10.1016/j.plantsci.2013.05.005
  6. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352 https://doi.org/10.3390/molecules15107313
  7. Xingfeng G, Daijie W, Wenjuan D, Jinhua D, Xiao W (2010) Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochem Anal 21: 268-272 https://doi.org/10.1002/pca.1196
  8. Stachulski AV, Meng X (2013) Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep 30: 806-848 https://doi.org/10.1039/c3np70003h
  9. Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol. 90: 1229-1239 https://doi.org/10.1007/s00253-011-3228-0
  10. Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91: 949-956 https://doi.org/10.1007/s00253-011-3449-2
  11. Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH (2014) Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol 80: 2754-2762 https://doi.org/10.1128/AEM.03797-13
  12. Gupta M, Zha J, Zhang X, Jung GY, Linhardt RJ, Koffas MAG (2018) Production of deuterated cyanidin 3-O-glucoside from recombinant Escherichia coli. ACS Omega 3: 11643-11648 https://doi.org/10.1021/acsomega.8b01134
  13. Kim MJ, Kim BG, Ahn JH (2013) Biosynthesis of bioactive Omethylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97: 7195-7204 https://doi.org/10.1007/s00253-013-5020-9
  14. Peterson J, Dwyer J (1998) Taxonomic classification helps identify flavonoid-containing foods on a semiquantitative food frequency questionnaire. J Am Diet Assoc 98: 677-682 https://doi.org/10.1016/S0002-8223(98)00153-9
  15. Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8:281-290 https://doi.org/10.1089/jmf.2005.8.281
  16. Kim BG, Joe EJ, Ahn JH (2010) Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-Omethylkaempferol. Biotechnol Lett 32: 579-584 https://doi.org/10.1007/s10529-009-0188-x
  17. De Meyer N, Haemers A, Mishra L, Pandey HK, Pieters LA, Vanden Berghe DA, Vlietinck AJ (1991) 4'-Hydroxy-3-methoxyflavones with potent antipicornavirus activity. J Med Chem 34: 736-746 https://doi.org/10.1021/jm00106a039
  18. Banskota AH, Tezuka Y, Adnyana IK, Xiong Q, Hase K, Tran KQ, Tanaka K, Saiki I, Kadota S (2000) Hepatoprotective effect of Combretum quadrangulare and its constituents. Biol Pharm Bull 23:456-460 https://doi.org/10.1248/bpb.23.456
  19. Nazaruk J, Jakoniuk P (2005) Flavonoid composition and antimicrobial activity of Cirsium rivulare (Jacq.) All. flowers. J Ethnopharmacol 102:208-212 https://doi.org/10.1016/j.jep.2005.06.012
  20. Leal LK, Canuto KM, da Silva Costa KC, Nobre-Junior HV, Vasconcelos SM, Silveira ER, Ferreira MV, Fontenele JB, Andrade GM, de Barros Viana GS (2009) Effects of amburoside A and isokaempferide, polyphenols from Amburana cearensis, on rodent inflammatory processes and myeloperoxidase activity in human neutrophils. Basic Clin Pharmacol Toxicol 104: 198-205 https://doi.org/10.1111/j.1742-7843.2008.00329.x
  21. Yang SM, Han SH, Kim BG, Ahn JH (2014) Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J Ind Microbiol Biotechnol 41: 1311-1318 https://doi.org/10.1007/s10295-014-1465-9
  22. Kim BG, Lee Y, Hur HG, Lim Y, Ahn JH (2006) Flavonoid 3'-Omethyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67: 387-394 https://doi.org/10.1016/j.phytochem.2005.11.022
  23. Jones JA, Vernacchio VR, Lachance DM, Lebovich M1, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MA (2015) ePathOptimize: A combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5: 11301 https://doi.org/10.1038/srep11301
  24. Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70: 1471-1477 https://doi.org/10.1271/bbb.60006
  25. Gohari AR, Saeidnia S, Matsuo K, Uchiyama N, Yagura T, Ito M, Kiuchi F, Honda G (2003) Flavonoid constituents of Dracocephalum kotschyi growing in Iran and their trypanocidal activity. Natural Medicines 57: 250-252
  26. Sung SH, Kim BG, Ahn JH (2011) Optimization of rhamnetin production in Escherichia coli. J Microbiol Biotechnol 21: 854-857 https://doi.org/10.4014/jmb.1104.04048
  27. Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16: 1-14 https://doi.org/10.1186/s12934-016-0616-2
  28. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69: 2699-2706 https://doi.org/10.1128/AEM.69.5.2699-2706.2003

Cited by

  1. 대장균에서 isorhamnetin 3-O-glucoside의 생합성 최적화 vol.62, pp.4, 2019, https://doi.org/10.3839/jabc.2019.050
  2. Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines vol.9, pp.11, 2019, https://doi.org/10.3390/foods9111613