DOI QR코드

DOI QR Code

벼멸구 저항성 유전자에 대한 국내 벼멸구의 생물적 반응 연구

Biological Response of Resistant Genes to Korean Brown Planthopper, Nilaparvata lugens Stål

  • 최낙중 (국립식량과학원 작물기초기반과) ;
  • 김광호 (국립농업과학원 작물보호과) ;
  • 백채훈 (농촌진흥청) ;
  • 이봉춘 (국립식량과학원 작물기초기반과)
  • Choi, Nak Jung (Crop Foundation Division, National Institute of Crop Science) ;
  • Kim, Gwang-Ho (Crop Protestion Division, National Academy of Agricultural Science) ;
  • Baik, Chai-Hun (Rural Development Administration) ;
  • Lee, Bong-Choon (Crop Foundation Division, National Institute of Crop Science)
  • 투고 : 2018.08.31
  • 심사 : 2018.10.17
  • 발행 : 2019.02.28

초록

벼멸구는 국내로 비래하여 벼에 가장 큰 피해를 주는 해충 중 하나이고, 매년 열대 및 아열대 지역에서 저기압 기류를 타고 침입한다. 따라서 벼멸구의 효과적인 방제를 위해 저항성 정도를 모니터링 하는 것은 매우 중요한 일이다. 국내 비래한 벼멸구를 지역별로 구분하여 벼멸구 저항성 유전자(Bph1, Bph2, Bph18)에 각각 접종하여 사육실의 동일한 환경조건($25{\pm}2^{\circ}C$, $60{\pm}5%\;RH$, L:D=16:8)에서 벼멸구의 감로 배설, 발육기간 및 산자수 등을 조사하였다. 얻어진 정보는 Jackknife 방법을 이용하여 생명표를 작성하였다. 벼멸구 저항성 유전자 중 Bph1 유전자에서 감로 분비량이 가장 적었고, 약충 발육기간은 $13.7{\pm}0.10$일(Bph2, 남해, 2015)에서 $18.5{\pm}1.06$일(Bph2, 사천, 2016)로 나타났다. 산란기간과 암컷수명은 감수성, Bph2 및 Bph18 (1980s 예외)에서 긴 것으로 조사되었고, 산자수도 2개의 동일한 저항성 유전자에서 많이 관찰되었다. 순증가율($R_0$)은 Bph2 유전자에서 지역에 관계없이 높은 것으로 나타났는데 내적자연증가율($r_m$)은 저항성 유전자에 대해 지역별로 차이를 보였다. 생명표는 벼멸구가 매년 다른 지역에서 비래하거나 그 생물적 특징이 다르다는 것을 보여준다.

Brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is one of the most important migratory pests damaging rice in Korea. It invades annually from tropical and subtropical areas via continental air streams. It is necessary to determine the resistance levels of rice varieties in order to control efficiency. The honeydew excretion, development, and reproduction of the migratory BPH were studied by region in a laboratory at $25{\pm}2^{\circ}C$ and $65{\pm}5%\;RH$ and a 16L: 8D photoperiodism conducted on three BPH resistant genes: Bph1, Bph2, and Bph18. The information obtained was reported using the jackknife method, and we created life table statistics accordingly. The feeding amount of Bph1 resistant gene was lower than that of resistant genes. The developmental periods of immature stages ranged from $13.7{\pm}0.10d$ on Bph2 (Namhae, 2015) to $18.5{\pm}1.06d$ on Bph2 (Sacheon, 2016). Reproductive period and female longevity were longest on the non-resistant genes, Bph2 and Bph18 (except 1980s), and the highest fecundity of N. lugens was observed on the two BPH resistant genes. Highest net reproductive rates ($R_0$) were calculated on Bph2 by region. Intrinsic rates of population increase ($r_m$) showed a difference in resistant genes by region. These population parameters showed that migratory regions and biological characteristics of N. lugens vary annually.

키워드

Table 1. Collection sites and dates of N. lugens in paddy fields

SMGHBM_2019_v29n2_202_t0001.png 이미지

Table 2. Rice varieties and their genetic backgrounds of resistance to N. lugens

SMGHBM_2019_v29n2_202_t0002.png 이미지

Table 3. Amount (mm2) of honeydew extracted by female of N. lugens on resistant genes

SMGHBM_2019_v29n2_202_t0003.png 이미지

Table 4. Mean developmental period (day±SE) of immature stages of N. lugens on resistant genes

SMGHBM_2019_v29n2_202_t0004.png 이미지

Table 5. Oviposition period, adult longevity (days±SE) and fecundity (eggs per female) of N. lugens on resistant genes

SMGHBM_2019_v29n2_202_t0005.png 이미지

Table 6. Population growth parameters of N. lugens on resistant genes

SMGHBM_2019_v29n2_202_t0006.png 이미지

참고문헌

  1. Alam, S. N. and Cohen, M. B. 1998. Detection and analysis of QTLs for resistance to the planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 97, 1370-1379. https://doi.org/10.1007/s001220051031
  2. Awmack, C. S. and Leather, S. R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
  3. Brar, D. S., Virk, P. S., Jena, K. K. and Khush, G. S. 2009. Breeding for resistance planthoppers in rice, pp. 401-409. In: Heong, K. L. and Hardy, B. (eds.), Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia. International Rice Research Institute Publishers: Los Bans, Philippines.
  4. Choi, J. S. and Park, Y. D. 1999. Differences of the honeydew excretion in growing characteristics of the brown planthopper, Nilaparvata lugens Stal. biotypes on different cultivars of rice with various resistance genes. J. Life Sci. 9, 121-126.
  5. Choi, N. J., Jeong, I. H., Kwon, D. H., Choi, M. Y. and Baek, C. H. 2017. Life table analysis of the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae) on rice of resistant cultivars. Kor. J. Environ. Biol. 35, 526-532. https://doi.org/10.11626/KJEB.2017.35.4.526
  6. Cohen, M. B., Alam, S. N., Medina, E. B. and Bernal, C. C. 1997. Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomol. Exp. Appl. 85, 221-229. https://doi.org/10.1046/j.1570-7458.1997.00252.x
  7. Hackerott, H. L. and Harvey, T. L. 1971. Greenbug injury to resistant and susceptible sorghums in the field. Crop. Sci. 11, 641-643. https://doi.org/10.2135/cropsci1971.0011183X001100050011x
  8. Heinrichs, E. A. 1986. Perspectives and directions for the continued development of insect-resistant rice varieties. Agric. Ecosyst. Environ. 18, 9-36. https://doi.org/10.1016/0167-8809(86)90172-6
  9. Hu, L. X., Chi, H., Zhang, J., Zhou, Q. and Zhang, R. J. 2010. Life-table analysis of the performance of Nilaparvata lugens (Hemiptera: Delphacidae) on two wild rice species. J. Econ. Entomol. 103, 1628-1635. https://doi.org/10.1603/EC10058
  10. Hwang, I. C., Kim, J. H. and Song, Y. H. 2002. Changes in the fitness of brown planthopper, Nilaparvata lugens Stal. (Homoptera: Delphacidae) to several resistant rice varieties after multi-generational selection. Kor. J. Appl. Entomol. 41, 113-121.
  11. Jena, K. K. and Kim, S. K. 2010. Current status of brown planthopper (BPH) resistance and genetics. Rice 3, 161-171. https://doi.org/10.1007/s12284-010-9050-y
  12. Jena, K. K., Jeung, J. U., Lee, J. H., Choi, H. C. and Brar, D. S. 2006. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 112, 288-297. https://doi.org/10.1007/s00122-005-0127-8
  13. Khush, G. S. and Virk, P. S. 2005. IR varieties and their impact, p. 163, International Rice Research Institute: Los Bans, Philippines.
  14. Kim, W. J., Park, H. S., Kim, H. S., Ha, K. Y., Cho, Y. C., Lee, J. H. and Kim, B. K. 2016. Response to brown planthopper resistance genes at rice seedling stage. Kor. J. Breed. Sci. 48, 29-36. https://doi.org/10.9787/KJBS.2016.48.1.029
  15. Lee, J. H., Yeo, U. S., Kwak, D. Y., Park, D. S., Oh, B. G., Ku, Y. C., Kim, H. Y. and Sohn, J. K. 2005. QTL analysis for ripening traits of BPH resistant backcross inbred in rice. Kor. J. Breed. Sci. 37, 295-299.
  16. Liu, Z., Li, D., Gong, P. Y. and Wu, K. J. 2004. Life table studies of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), on different host plants. Environ. Entomol. 33, 1570-1576. https://doi.org/10.1603/0046-225X-33.6.1570
  17. Maia, A. H. N., Luiz, A. J. B. and Campanhola, C. 2000. Statistical influence on associated fertility life table parameters using Jackknife technique: Computational Aspects. J. Econ. Entomol. 93, 511-518. https://doi.org/10.1603/0022-0493-93.2.511
  18. Paguia, P., Pathak, M. D. and Heinrichs, E. A. 1980. Honeydew excretion measurement techniques for determining differential feeding activity of biotypes of Nilaparvata lugens on rice varieties. J. Econ. Entomol. 73, 35-40. https://doi.org/10.1093/jee/73.1.35
  19. Park, Y. D. and Song, Y. H. 1988. Preference, development and fecundity of the brown planthopper (Nilaparvata lugens Stal) biotypes fed on different cultivars of rice with various resistance gene. Kor. J. Appl. Entomol. 27, 87-93.
  20. Saxena, R. C. and Barrion, A. A. 1985. Biotypes of the brown planthopper Nilaparvata lugens (Stal) and strategies in deployment of host plant resistance. Insect Sci. Applic. 6, 271-289.
  21. Seo, J. P., Jeong, J. U., Kim, Y. G., Jena, K. K., Cho, Y. C., Lee, J. H., Kim, M. K., Hong H. C., Lee, J. H., Kim, J. J., Choi, I. S., Jeong, E. G., Hwang, H. G., OH, S. K., Yang, C. I. and Shin, M. S. 2014. A brown planthopper resistant and high grain quality rice variety 'Anmi' developed by molecular breeding method. Kor. J. Breed. Sci. 46, 152-159. https://doi.org/10.9787/KJBS.2014.46.2.152
  22. Sogawa, K. and Pathak, M. D. 1970. Mechanism of brown planthopper resistance in Mudgo variety of rice (Hemiptera: Delphacidae). Appl. Ent. Zool. 5, 145-158. https://doi.org/10.1303/aez.5.145
  23. Tanaka, K. and Matsumura, M. 2000. Development of virulence the resistant rice varieties in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae), immigrating into Japan. Appl. Entomol. Zool. 35, 529-533. https://doi.org/10.1303/aez.2000.529
  24. Van Lanteren, J. C. and Noldus, L. P. J. J. 1990. Whitefly plant relationships, behavioural and ecological aspects, pp. 47-89. In: Gerling, D. (eds.), White Flies: Their Bionomics, Pest Status and Management. Intercept Press Publisher: Andover, UK.
  25. Yeo, U. S. and Sohn, J. K. 1995. Effective screening methods and inheritance of resistance to brown planthopper (Nilaparvata lugens Stal.) in rice. Kor. J. Breed. 27, 372-379.