DOI QR코드

DOI QR Code

A Study on the Whitening Effect of Erigeron annuus (L.) Pers. Ethanol Extract on Melanoma Cell (B16F10)

멜라노마 세포(B16F10)에서의 개망초 추출물을 이용한 미백효과에 관한 연구

  • Joo, Da-Hye (Department of Cosmetic Science, Hoseo University) ;
  • Yoo, Dan-Hee (Department of Cosmetic Science, Hoseo University) ;
  • Lee, Jin-Young (Department of Cosmetic Science, Hoseo University)
  • 주다혜 (호서대학교 화장품생명공학부) ;
  • 유단희 (호서대학교 화장품생명공학부) ;
  • 이진영 (호서대학교 화장품생명공학부)
  • Received : 2018.05.24
  • Accepted : 2018.09.27
  • Published : 2019.03.28

Abstract

A 70% ethanol extract of Erigeron annuus (L.) Pers. was investigated for its whitening activity for application as a functional ingredient in cosmetic products. At the E. annuus extract concentration of $100{\mu}g/ml$, the electron-donating ability was found to be 67.83%, the tyrosinase inhibitory effect (related to skin-whitening) was 69%, the elastase inhibitory effect (related to skin-wrinkling) was 69%, and the astringent effect was 80%. The $ABTS^+$ radical-scavenging ability was 87% at the $500{\mu}g/ml$ concentration. In the cell viability test measured on melanoma cells, 96% of the cells treated with $100{\mu}g/ml$ of the extract were viable. According to the western blot results, the protein expression of the microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 was decreased by 60.22%, 47.83%, 54.79%, and 67.88%, respectively, at the extract concentration of $100{\mu}g/ml$. The protein expression of phosphorylated extracellular signal regulated kinase (p-ERK) and phosphorylated cAMP response element-binding protein (p-CREB) was decreased with increasing concentrations of the extract. Reverse transcription-polymerase chain reaction of the extract showed that the mRNA expression of MITF, tyrosinase, TRP-1, and TRP-2 was decreased by 86.51%, 85.22%, 74.26%, and 66.66%, respectively, at $100{\mu}g/ml$ extract concentration. The findings suggest that the 70% ethanol extract from E. annuus (L.) Pers. has potential as a cosmeceutical ingredient with whitening effect.

개망초의 항산화능 측정으로 전자공여능을 측정한 결과 농도 의존적으로 활성이 증가하여 $500{\mu}g/ml$에서 82%의 높은 전자공여능을 나타내었다. $ABTS^+$ 라디칼 소거능 측정 결과 농도가 증가함에 따라 활성이 증가하였으며, $500{\mu}g/ml$에서 87% 이상의 활성을 나타내었다. Tyrosinase 저해 활성 측정결과 개망초 에탄올 추출물이 $100{\mu}g/ml$에서 69%의 효과를 나타내었다. 농도가 증가함에 따라 억제활성이 증가하는 것을 확인할 수 있었고, $100{\mu}g/ml$에서 32.2%의 효과를 나타내었다. 개망초 추출물에 대한 수렴효과를 측정한 결과 농도의존적으로 활성이 증가하였으며, $100{\mu}g/ml$에서 80%이상의 우수한 수렴효과를 확인할 수 있었다. 세포 생존율을 MTT 분석법을 통해 확인한 결과 농도 구간이 $100{\mu}g/ml$ 일 때 96%의 생존율을 보였으며, 따라서 관련 실험을 세포생존율이 100%에 가까운 25, 50, $100{\mu}g/ml$에서 진행하였다. B16F10 세포에 개망초 에탄올 추출물을 처리한 결과 MITF, TRP-2의 단백질 발현양이 감소하는 것을 확인할 수 있었으며, TRP-1과 tyrosinase 발현양이 크게 감소하는 것을 확인할 수 있었다. 상위 단계 유전자인 ERK와 CREB의 발현양은 미비했으나, 인산화된 ERK와 인산화된 CREB에서 농도가 증가함에 따라 단백질 발현양이 감소하는 것을 확인할 수 있었다. 개망초 에탄올 추출물을 25, 50, $100{\mu}g/ml$의 농도 별로 처리하였으며 MITF, TRP-1, TRP-2, tyrosinase의 mRNA 발현 측정 결과 농도가 증가함에 따라서 mRNA 발현을 억제하는 것을 확인할 수 있었다. 따라서 항산화 및 멜라닌 생합성에 관여하는 그 하위 유전자 및 상위 유전자의 발현을 저해하여 멜라닌 생성을 억제하는 것으로 추측되고 그에 따라 우리나라 전역에서 재배가 가능하고 국화과에 속하는 신귀화식물 개망초를 기능성 천연 미백소재로써 이용 가능성을 확인하였다.

Keywords

References

  1. Kim EJ, Choi JY, Yu MY, Kim MY, Kim SH, Lee BH. 2012. Total polyphenols, total flavonoid contents and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 44: 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  2. Kim JW, Kim JS, Song IS, Kwon ES, Youn KS. 2013. Comparison of antioxidant and physiological properties of jerusalem artichoke leaves with different extraction processes. J. Korean Soc. Food Sci. Nutr. 42: 68-75. https://doi.org/10.3746/jkfn.2013.42.1.068
  3. Youm TH, Lim HB. 2010. Antimirobial activities of organic extracts from fruit of Thuja orientalis L. Korean J. Med. Crop Sci. 18: 315-322.
  4. Parvez S, Kang MK, Chung HS, Cho CW, Hong MC, Shin MK, et al. 2006. Survey and mechanism of skin depigmenting and lightening agent. Phytother Res. 20: 921-934. https://doi.org/10.1002/ptr.1954
  5. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. 2000. Inhibition of melanosome transfer results in skin lightening. J. Invest. Dermatol. 115: 162-167. https://doi.org/10.1046/j.1523-1747.2000.00035.x
  6. Hunt G, Todd C, Cresswell JE, Thody AT. 1994. Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell Sci. 107: 205-216. https://doi.org/10.1242/jcs.107.1.205
  7. Busca R, Ballotti R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigm. Cell Res. 13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  8. Fordin M, Peraldi P, Van Obberghen E. 1994. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J. Biol. Chem. 269: 6207-6214. https://doi.org/10.1016/S0021-9258(17)37589-0
  9. Lee JH, Lee SY. 1983. Effects of toxic substances of Erigeron annus on the germination and seeding growth of several upland crops. Wonkwang Univ. 17: 107-139.
  10. Kim DH, Jung SJ, Bang MH, Chung IS, Kim SH, Kwon BM, et al. 2004. Development of biologically active compounds from edible plant sources -XIII. Isolation of triterpenoids from the flower of Erigeron annuus L. J. Korean Soc. Appl. Bol. Chem. 47: 422-425.
  11. Shin YS, Cho AR. 2004. Natural dyeing using the colorants extracted from American Fleabane (Part II) - Dyeing properties on cotton. J. Korean Soc. Cloth. Text. 28: 1625-1631.
  12. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1120. https://doi.org/10.1038/1811199a0
  13. Roberta R, Nicoletta P, Anna P, Ananth P, Min Y, Catherine RE. 1999. Antioxidant acitivity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  14. Yagi A, Kanbara T, Morinobu N. 1986. The effect of tyrosinase inhibition for aloe. Planta Med. 3981: 517-519.
  15. Cannell RJP, Kellan SJ, Owsianks AM, Walker JM. 1988. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta. Med. 54: 10-14. https://doi.org/10.1055/s-2006-962319
  16. Lee JT, Jeong YS, An BJ. 2002. Physiological activity of Salicornia erbacea and its application for cometic materials. Korean J. Herbol. 17: 51-60.
  17. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  18. Hatano T. 1995. Constituents of natural medicines with scavenging effects on active oxygen species tannins and related polyphenols. Nat. Med. 49: 357-363.
  19. Riley PA. 1997. Molecules in focus melanin. Int. J. Biochem. Cell Biol. 29: 1235-1239. https://doi.org/10.1016/S1357-2725(97)00013-7
  20. Ju JC, Shin JH, Lee SJ, Cho HS, Sung NJ. 2006. Antioxidative activity of hot water extracts from medicinal plants. J. Korean Soc. Food Sci. Nutr. 35: 7-14. https://doi.org/10.3746/jkfn.2006.35.1.007
  21. Cho KS. 2016. Inhibitory effect of DPPH radical scavenging activity and hydroxyl radicals (OH) activity of Hydrocotyle sibthorpioides Lamarck. J. Life Sci. 26: 1022-1026. https://doi.org/10.5352/JLS.2016.26.9.1022
  22. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Agric. Food Chem. 51: 6657-6719. https://doi.org/10.1021/jf034790i
  23. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeon BT. 2011. Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in Chang cells. J. Korean Soc. Food Sci. Nutr. 40: 1525-1531. https://doi.org/10.3746/jkfn.2011.40.11.1525
  24. Cha JY, Yang HJ, Jeong JJ, Seo WS, Park JS, Ok M, et al. 2010. Tyrosinase inhibition activity and antioxidant capacity by fermented products of some medicinal plants. J. Life Sci. 20: 940-947. https://doi.org/10.5352/JLS.2010.20.6.940
  25. Im S, Moro O, Peng F, Medrano EE, Cornelius J. 1998. Activation of the cAMP pathway by ${\alpha}$-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 58: 47-54.
  26. Iwata M, Corn T, Iwata S, Everett MA, Fuller BB. 1990. The relationship between tyrosinase activity and skin color in human foreskins. J. Invest. Dermatol. 95: 9-15. https://doi.org/10.1111/1523-1747.ep12872677
  27. Lee SY, An JH, Chun H, Cho HY. 2003. Isolation and characterization of MMP-1 inhibitor peptide from Crataegus pinnatifida Bunge in fibroblast cell line HS68 cells. Korean J. Soc. Appl. Biol. Chem. 46: 60-65.
  28. Tsuji N, Moriwaki S, Suzuki Y, Takema Y, Imokawa G. 2001. The role of elastases secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity. Photochem. Photobiol. 74: 283-290. https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
  29. Lim AK, Kim JO, Jung MJ, Jung HK, Hong JH, Kim DI. 2008. Functional biological activity of hot water and ethanol extracts from taraxaci herba. J. Korean. Soc. Food. Sci. Nutr. 37: 1231-1237. https://doi.org/10.3746/jkfn.2008.37.10.1231
  30. Youn JS, Shin SY, Wu YX, Hwang JY, Cho JH, Ha YG, et al. 2012. Antioxidant and anti-wrinkling effects of Aruncus dioicus var. kamtschaticus extract. Korean J. Food Preserv. 19: 393-399. https://doi.org/10.11002/kjfp.2012.19.3.393
  31. Ukeda H, Maeda S, Ishii T, Sawamura M. 1997. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)- carbonyl-3, 4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate reduction by xanthinexanthine oxidase. Anal. Biochem. 251: 206-215. https://doi.org/10.1006/abio.1997.2273
  32. Kim BY, Park SH, Park BJ, Kim JJ. 2015. Whitening effect of Androsace umbellata extract. J. Soc. Cosmet. Sci. 41: 21-26.
  33. Hearing VJ, Tsukamoto K, Urabe K, Kameyama K, Montague PM, Jackson IJ. 1992. Fuctional properties of cloned melanogenic proteins. Pigment Cell Res. 5: 264-334. https://doi.org/10.1111/j.1600-0749.1992.tb00547.x