DOI QR코드

DOI QR Code

Identification, Expression and Preliminary Characterization of a Recombinant Bifunctional Enzyme of Photobacterium damselae subsp. piscicida with Glutamate Decarboxylase/Transaminase Activity

  • 투고 : 2018.04.05
  • 심사 : 2018.09.18
  • 발행 : 2019.03.28

초록

Glutamate decarboxylase catalyzes the conversion of glutamate to gamma-aminobutyric acid (GABA), contributing to pH homeostasis through proton consumption. The reaction is the first step toward the GABA shunt. To date, the enzymes involved in the glutamate metabolism of Photobacterium damselae subsp. piscicida have not been elucidated. In this study, an open reading frame of P. damselae subsp. piscicida, showing homology to the glutamate decarboxylase or putative pyridoxal-dependent aspartate 1-decarboxylase genes, was isolated and cloned into an expression vector to produce the recombinant enzyme. Preliminary gas chromatography-mass spectrometry characterization of the purified recombinant enzyme revealed that it catalyzed not only the decarboxylation of glutamate but also the transamination of GABA. This enzyme of P. damselae subsp. piscicida could be bifunctional, combining decarboxylase and transaminase activities in a single polypeptide chain.

키워드

참고문헌

  1. Erlander MG, Tobin AJ. 1991. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16: 215-226. https://doi.org/10.1007/BF00966084
  2. Jakobs C, Jaeken J, Gibson KM. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704-715. https://doi.org/10.1007/BF00711902
  3. Ting Wong CG, Bottiglieri T, Snead OC. 2003. GABA, ${\gamma}$-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3-S12.
  4. Park KB, Oh SH. 2007. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour. Technol. 98: 312-319. https://doi.org/10.1016/j.biortech.2006.01.004
  5. Xu N, Wei L, Liu J. 2017. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J. Microbiol. Biotechnol. 33: 1-11. https://doi.org/10.1007/s11274-016-2144-y
  6. Foerster CW, Foerster HF. 1973. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J. Bacteriol. 114: 1090-1098. https://doi.org/10.1128/JB.114.3.1090-1098.1973
  7. Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS. 2001. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276: 244-250. https://doi.org/10.1074/jbc.M007103200
  8. Kagan IA, Coe BL, Smith LL, et al. 2008. A validated method for gas chromatographic analysis of ${\gamma}$-aminobutyric acid in tall fescue herbage. J. Agric. Food Chem. 56: 5538-5543. https://doi.org/10.1021/jf8000229
  9. Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of ${\gamma}$-aminobutyric acid. Trends Plant Sci. 4: 446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  10. Liao J, Wu X, Xing Z, et al. 2017. ${\gamma}$-aminobutyric acid accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J. Agric. Food Chem. 65: 3013-3018. https://doi.org/10.1021/acs.jafc.7b00304
  11. Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH. 2017. Characterization of a glutamate decarboxylase (GAD) from Enterococcus avium M5 isolated from Jeotgal, a Fermented Korean Sea Food. J Microbiol Biotechnol. 28: 1216-1222.
  12. De Biase D, Tramonti A, John RA, Bossa F. 1996. Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein. Expr. Purif. 8: 430-438. https://doi.org/10.1006/prep.1996.0121
  13. Cotter PD, Gahan CGM, Hill C. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465-475. https://doi.org/10.1046/j.1365-2958.2001.02398.x
  14. Waterman SR, Small PLC. 2003. Identification of the promoter regions and sigma(s)-dependent regulation of the gadA and gadBC genes associated with glutamate-dependent acid resistance in Shigella flexneri. FEMS Microbiol. Lett. 225: 155-160. https://doi.org/10.1016/S0378-1097(03)00508-1
  15. Capitani G, De Biase D, Aurizi C, et al. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22: 4027-4037. https://doi.org/10.1093/emboj/cdg403
  16. Andreoni F, Magnani M. 2014. Photobacteriosis: prevention and diagnosis. J. Immunol. Res. 2014: 793817.
  17. Balado M, Benzekri H, Labella AM, et al. 2017. Genomic analysis of the marine fish pathogen Photobacterium damselae subsp. piscicida?: Insertion sequences proliferation is associated with chromosomal reorganisations and rampant gene decay. Infect. Genet. Evol. 54: 221-229. https://doi.org/10.1016/j.meegid.2017.07.007
  18. Andreoni F, Boiani R, Serafini G, et al. 2013. Isolation of a novel gene from Photobacterium damselae subsp. piscicida and analysis of the recombinant antigen as promising vaccine candidate. Vaccine 31: 820-826. https://doi.org/10.1016/j.vaccine.2012.11.064
  19. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679. https://doi.org/10.1093/bioinformatics/btm009
  20. Lukashin AV, Borodovsky M. 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26: 1107-1115. https://doi.org/10.1093/nar/26.4.1107
  21. Altschul SF, Wootton JC, Michael Gertz E, Agarwala R, Morgulis A, Schaffer AA, et al. 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272: 5101-5109. https://doi.org/10.1111/j.1742-4658.2005.04945.x
  22. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-226. https://doi.org/10.1093/nar/gku1221
  23. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45: D200-D203. https://doi.org/10.1093/nar/gkw1129
  24. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  25. Yang SY, Lin Q, Lu ZX, Lu FX, Bie XM, Zou XK, et al. 2008. Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2. J. Chem. Technol. Biotechnol. 83: 855-861. https://doi.org/10.1002/jctb.1880
  26. Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M. 2009. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77: 1473-1482. https://doi.org/10.1016/j.talanta.2008.09.043
  27. Sobolevsky TG, Revelsky AI, Miller B, Oriedo V, Chernetsova ES, Revelsky IA. 2003. Comparison of silylation and esterification/acylation procedures in GC-MS analysis of amino acids. J. Sep. Sci. 26: 1474-1478. https://doi.org/10.1002/jssc.200301492
  28. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH. 2000. Cn3D: sequence and structure views for Entrez. Trends Biochem. Sci. 25: 300-302. https://doi.org/10.1016/S0968-0004(00)01561-9
  29. John RA. 1995. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta 1248: 81-96. https://doi.org/10.1016/0167-4838(95)00025-P
  30. Hiraga K, Ueno Y, Oda K. 2008. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci. Biotechnol. Biochem. 72: 1299-1306. https://doi.org/10.1271/bbb.70782
  31. Halket JM, Zaikin VG. 2003. Derivatization in mass spectrometry-1. Silylation. Eur. J. Mass Spectrom. 9: 1-21. https://doi.org/10.1255/ejms.527
  32. Harris DC. 2010. Quantitative chemical analysis, pp 565-594. 8th Ed. W.H. Freeman and Company, New York.
  33. Schummer C, Sadiki M, Mirabel P, Millet M. 2006. Analysis of tbutyldimethylsilyl derivatives of chlorophenols in the atmosphere of urban and rural areas in East of France. Chromatographia 63: 189-195. https://doi.org/10.1365/s10337-006-0721-1
  34. Ohie T, Fu XW, Iga M, Kimura M, Yamaguchi S. 2000. Gas chromatography-mass spectrometry with tert.-butyldimethylsilyl derivatization: Use of the simplified sample preparations and the automated data system to screen for organic acidemias. J. Chromatogr. B Biomed. Sci. Appl. 746: 63-73. https://doi.org/10.1016/S0378-4347(00)00105-5
  35. Wang NC, Lee CY. 2007. Enhanced transaminase activity of a bifunctional L-aspartate 4-decarboxylase. Biochem. Biophys. Res. Commun. 356: 368-373. https://doi.org/10.1016/j.bbrc.2007.02.141
  36. de Carvalho LPS, Ling Y, Shen C, Warren JD, Rhee KY. 2011. On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. Arch. Biochem. Biophys. 509: 90-99. https://doi.org/10.1016/j.abb.2011.01.023
  37. Feehily C, O'Byrne CP, Karatzas KAG. 2013. Functional ${\gamma}$-aminobutyrate shunt in Listeria monocytogenes: Role in acid tolerance and succinate biosynthesis. Appl. Environ. Microbiol. 79: 74-80. https://doi.org/10.1128/AEM.02184-12
  38. Xiong W, Brune D, Vermaas WFJ. 2014. The ${\gamma}$-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol. Microbiol. 93: 786-796. https://doi.org/10.1111/mmi.12699
  39. Feehily C, Karatzas KAG. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114: 11-24. https://doi.org/10.1111/j.1365-2672.2012.05434.x
  40. Gibson KM, Gupta M, Pearl PL, Tuchman M, Vezina LG, Snead III OC, et al. 2003. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (Gamma-Hydroxybutyric aciduria). Biol. Psychiatry 54: 763-768. https://doi.org/10.1016/S0006-3223(03)00113-6
  41. Shapiro N, Kramer M, Goldberg I, Vigalok A. 2010. Straightforward radical organic chemistry in neat conditions and "on water." Green Chem. 12: 582-584. https://doi.org/10.1039/b922475k
  42. Shapiro N, Vigalok A. 2008. Highly efficient organic reactions "on water", "in water", and both. Angew. Chemie - Int. Ed. 47: 2849-2852. https://doi.org/10.1002/anie.200705347
  43. Vanoye L, Favre-Raguillon A, Aloui A, Philippe R, De Bellefon C. 2013. Insights in the aerobic oxidation of aldehydes. RSC Adv. 3: 18931-18937. https://doi.org/10.1039/c3ra42385a
  44. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100: 10181-10186. https://doi.org/10.1073/pnas.1731982100