참고문헌
- Keinan E, Hafeli EK, Seth KK, Lamed R. 1986. Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J. Am. Chem. Soc. 108: 162-169. https://doi.org/10.1021/ja00261a026
- Patel RN. 2008. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coordin. Chem. Rev. 252: 659-701. https://doi.org/10.1016/j.ccr.2007.10.031
- De Smidt O, Du Preez JC, Albertyn J. 2008. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 8: 967-978. https://doi.org/10.1111/j.1567-1364.2008.00387.x
- Bolle X, Vinals C, Prozzi D, Paquet JY, Leplae R, Depiereux E, et al. 1995. Identification of residues potentially involved in the interactions between subunits in yeast alcohol dehydrogenases. Eur. J. Biochem. 231: 214-219. https://doi.org/10.1111/j.1432-1033.1995.tb20689.x
- Nakamura K, Yamanaka R, Matsuda T, Harada T. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron:Asymmetr. 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
- Muller M, Wolberg M, Schubert T, Hummel W. 2005. Enzymecatalyzed regio-and enantioselective ketone reductions. Adv. Biochem. Eng. Biotechnol. 92: 261-287.
- Matsuda T, Yamanaka R, Nakamura K. 2009. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron:Asymmetr. 20: 513-557. https://doi.org/10.1016/j.tetasy.2008.12.035
- Musa MM, Phillips RS. 2011. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catal. Sci. Technol. 1: 1311-1323. https://doi.org/10.1039/c1cy00160d
- Nealon CM, Musa MM, Patel JM, Phillips RS. 2015. Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. ACS Catal. 5: 2100-2114. https://doi.org/10.1021/cs501457v
- Bradshaw CW, Hummel W, Wong CH. 1992. Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J. Org. Chem. 57: 1532-1536. https://doi.org/10.1021/jo00031a037
- Bradshaw CW, Fu H, Shen GJ, Wong CH. 1992. A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J. Org. Chem. 57: 1526-1532. https://doi.org/10.1021/jo00031a036
- Yang Z-H, Zeng R, Yang G, Wang Y, Li L-Z, Lv Z-S, et al. 2008. Asymmetric reduction of prochiral ketones to chiral alcohols catalyzed by plants tissue. J. Ind. Microbiol. Biotechnol. 35: 1047-1051. https://doi.org/10.1007/s10295-008-0381-2
- Heiss C, Laivenieks M, Zeikus JG, Phillips RS. 2001. Mutation of cysteine-295 to alanine in secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus affects the enantioselectivity and substrate specificity of ketone reductions. Bioorg. Med. Chem. 9: 1659-1666. https://doi.org/10.1016/S0968-0896(01)00073-6
- Musa MM, Lott N, Laivenieks M, Watanabe L, Vieille C, Phillips RS. 2009. A single point mutation reverses the enantiopreference of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase. ChemCatchem. 1: 89-93. https://doi.org/10.1002/cctc.200900033
- Musa MM, Ziegelmann-Fjeld KI, Vieille C, Zeikus JG, Phillips RS. 2007. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. J. Org. Chem. 72: 30-34. https://doi.org/10.1021/jo0616097
- Musa MM, Ziegelmann-Fjeld KI, Vieille C, Phillips RS. 2008. Activity and selectivity of W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus in organic solvents and ionic liquids: mono-and biphasic media. Org. Biomol. Chem. 6: 887-892. https://doi.org/10.1039/b717120j
- Maniatis T, Fritsch EF, Sambrook J. 1982. Molecular cloning: a laboratory manual, Cold spring harbor laboratory, Cold Spring Harbor, NY.
- Ziegelmann-Fjeld KI, Musa MM, Phillips RS, Zeikus JG, Vieille C. 2007. A Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase mutant derivative highly active and stereoselective on phenylacetone and benzylacetone. Protein Eng. Des. Sel. 20: 47-55. https://doi.org/10.1093/protein/gzl052
- Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
- Guex N, Peitsch MC. 1997. Swiss-Model and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
- DeLano WL. 2002. The PyMOL molecular graphics system. http://www. pymol.org.
- Li C, Heatwole J, Soelaiman S, Shoham M. 1999. Crystal structure of a thermophilic alcohol dehydrogenase substrate complex suggests determinants of substrate specificity and thermostability. Proteins 37: 619-627. https://doi.org/10.1002/(SICI)1097-0134(19991201)37:4<619::AID-PROT12>3.0.CO;2-H
- Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. https://doi.org/10.1093/bioinformatics/btq662
- Goihberg E, Dym O, Tel-Or S, Shimon L, Frolow F, Peretz M, et al. 2008. Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution. Proteins 72: 711-719. https://doi.org/10.1002/prot.21946
- Bogin O, Peretz M, Hacham Y, Burstein Y, Korkhin Y, Frolow F. 1998. Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein Sci. 7: 1156-1163. https://doi.org/10.1002/pro.5560070509
- Soni S, Desai J, Devi S. 2001. Immobilization of yeast alcohol dehydrogenase by entrapment and covalent binding to polymeric supports. J. Appl. Polym. Sci. 82: 1299-1305. https://doi.org/10.1002/app.1964
- Naik HG, Yeniad B, Koning CE, Heise A. 2012. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density. Org. Biomol. Chem. 10: 4961-4967. https://doi.org/10.1039/c2ob06870b
- Musa MM, Patel JM, Nealon CM, Kim CS, Phillips RS, Karume I. 2015. Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase mutants with improved racemization activity. J. Mol. Catal. B-Enzym. 115: 155-159. https://doi.org/10.1016/j.molcatb.2015.02.012
- Rodriguez C, Borzęcka W, Sattler JH, Kroutil W, Lavandera I, Gotor V. 2014. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones. Org. Biomol. Chem. 12: 673-681. https://doi.org/10.1039/C3OB42057D
- Burdette DS, Tchernajencko V, Zeikus JG. 2000. Effect of thermal and chemical denaturants on Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase stability and activity. Enzyme Microb. Technol. 27: 11-18. https://doi.org/10.1016/S0141-0229(00)00192-7
- Ganter C, Plueckthun A. 1990. Glycine to alanine substitutions in helixes of glyceraldehyde-3-phosphate dehydrogenase: effects on stability. Biochemistry 29: 9395-9402. https://doi.org/10.1021/bi00492a013
- Pace CN, Shirley BA, McNutt M, Gajiwala K. 1996. Forces contributing to the conformational stability of proteins. FASEB J. 10: 75-83. https://doi.org/10.1096/fasebj.10.1.8566551
- Korkhin Y, Kalb AJ, Peretz M, Bogin O, Burstein Y, Frolow F. 1999. Oligomeric integrity-the structural key to thermal stability in bacterial alcohol dehydrogenases. Protein Sci. 8: 1241-1249. https://doi.org/10.1110/ps.8.6.1241