Fig. 1 Satellite image of experimental pig farm surrounded by mountain area in Yeonggwang, Korea; blue arrow represents the intaking direction of outside air
Fig. 2 Airflow image of experimental pig farm
Fig. 3 Ventilation system operated during spring season with various outlet(red) and inlet (blue)
Fig. 4 Temperature and humidity sensor locations installed inside and outside the experimental pig room; HOBO data logger was used for sensor 1∼9 and IC(inside climate) and Weather Station was used for sensor OC(outside climate)
Fig. 5 Mesh design of the experimental pig house
Fig. 6 Field monitoring data for validation of CFD model considering steady state condition
Fig. 7 Locations of each pen for analysis of internal environmental conditions in the experimental pigroom
Fig. 8 Comparison of turbulence model using internal thermal distributions between field measured and CFD computed temperatures
Fig. 9 Thermal distribution at working height between field measured and CFD computed data
Fig. 10 Airflow pattern computed by CFD simulation; color of arrows represents air velocity magnitude ranged from 0∼5 m/s
Table 3 Environmental conditions including air velocity, temperature, and ventilation efficiencies computed by TGD using CFD simulation according to the pig and human respirable heights
Table 1 Daily feed energy coefficient used for calculating pig heat-production (CIGR, 2004)
Table 2 Input & boundary conditions for the CFD simulation model of the experimental pig house
Table 4 Distribution of CO2 concentration in the experimental pigroom by heights at 60 seconds after starting the ventilation system using fresh outside air with CO2 concentration of 400 ppm when CO2 gas was initially disturbed by 2,000 ppm
참고문헌
- Bjerg, B., K. Svidt, G. Zhang, S. Morsing, and J. O. Johnsen, 2002. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture 34: 223-235. doi:10.1016/S0168-1699(01)00189-2.
- Berckmans, D., 2017. General introduction to precision livestock farming. Animal Frontiers 7(1): 6-11. doi:10.2527/af.2017.0102.
- Vranken, E., and D. Berckmans, 2018. Precision livestock farming for pigs. Animal Frontiers 7(1): 32-37. doi:10.2527/af.2017.0106.
- Forestry Production and Value Added to GDP. http://www.index.go.kr/potal/stts/, Acessed 10 Sep. 2018.
- Li, H., R. Li, and G. Zhang, 2017. Reliability of turbulence models and mesh types for CFD simulations of a mechanically ventilated pig house containing animals. Biosystems Engineering 161: 37-52. doi:10.1016/j.biosystemseng.2017.06.012.
- Hong, S. W., V. Exadakylos, I. B. Lee, T. Amon, A. Youssef, T. Norton, and D. Berckmans, 2017. Validation of an open source CFD code to simulate natural ventilation for agricultural buidings. Computers and Electronics in Agriculture 138: 80-91. doi:10.1016/j.compag.2017.03.022.
- Kim, R. W., I. B. Lee, T. H. Ha, U. H. Yeo, S. Y. Lee, M. H. Lee, G. Y. Park, and J. K. Kim, 2017. Development of CFD model for predicting ventilation rate based on age of air theory using thermal distribution data in pig house. Journal of the Korean Society of Agricultural Engineers 59(6): 61-71 (in Korea). https://doi.org/10.5389/KSAE.2017.59.6.061
- MAFRA, Agriculture and Forestry Production and Value Added to GDP. http://www.index.go.kr, Acessed 10 Sep. 2018.
- Park, S. J., I. B. Lee, S. W. Hong, K. S. Kwon, T. H. Ha, N. G. Yoon, H. G. Kim, and S. H. Kwon, 2013. Development of straightforward method of estimating LMA and LMR using computational fluid dynamics technology. Journal of the Korean Society of Agricultural Engineers 55(6): 135-144 (in Korean). doi:10.5389/ksae.2013.55.6.135.
- RDA (Rural Development Administration), 2016. Agricultural Management Assistant Pig Management. (authors: D. W. Cheon, D. K. Seo, J. Y. Son, B. C. Lee, H. J. Jin, S. H. Choi, and Y. D. Park) Eden house (in Korean).
- Ray, P. P., 2017. Internet of things for smart agriculture: technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments 9(4): 395-420. doi:10.3233/ais-170440.
- Roque, K., G. D. Lim, J. H. Jo, K. M. Shin, E. S. Song, R. Gautam, C. Y. Kim, K. Lee, S. Shin, H. S. Yoo, Y. Heo, and H. A. Kim, 2016. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings. Journal of Veterinary Science 17(4): 531-538. doi.10.4142/jvs.2016.17.4.531.
- Li, R., P. V. Nielsen, B. Bjerg, and G. Zhang, 2016. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality. Computers and Electronics in Agriculture 121: 180-190. doi:10.1016/j.compag.2015.12.005.
- Fournel, S., A. N. Rousseau, and B. Laberge, 2017. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosystems Engineering 115: 96-123. doi:10.1016/j.biosystemseng.2016.12.005.
- Seo, I. H., I. B. Lee, S. W. Hong, H. S. Hwang, J. P. Bitog, J. I. Yoo, K. S. Kwon, T. H. Ha, and H. T. Kim, 2008. Development of a CFD model to study ventilation efficiency of mechanically ventilated pig house. Journal of the Korean Society of Agricultural Engineers 50(1): 25-37 (in Korean). doi:10.5389/ksae.2008.50.1.025.
- Seo, I. H., L. B. Lee, O. K. Moon, S. W. Hong, H. S. Hwang, J. P. Bitog, K. S. Kwon, Z. Ye, and J. W. Lee, 2012. Modelling of internal environmental conditions in a full-scale commercial pig house containing animals. Biosystems Engineering 111: 91-106. doi:10.1016/j.biosystemseng.2011.10.012.
- Seo, I. H., L. B. Lee, O. K. Moon, and K. S. Kwon, 2014. Aerodynamic approaches for estimation of waste disease spread in pig farm through airborne contaminants. Journal of the Korean Society of Agricultural Engineers 56(1): 41-49 (in Korean). doi:org/10.5389/ksae.2014.56.1.041.
- Yoon, N. G., 2002. Design and analysis for greenhouse environment using CFD simulation. Kor. Res. Soc. Protected Hort 15(1): 20-26 (in Korean).
- Yu, I. H., M. K. Kim, H. J. Kwon, and K. S. Kim, 2002. Development of CFD model for estimation of cooling effect of fog cooling system in greenhouse. Bio-Environment Control 11(2): 93-100 (in Korean).