Fig. 1 Study area – Soyangriver dam watershed
Fig. 2 Study area – Chungju dam watershed
Fig. 3 Architecture of artificial neuron
Fig. 4 Structure of artificial neural network
Fig. 5 MSE according to time lags (Chungju dam)
Fig. 6 MSE according to time lags (Soyangriver dam)
Fig. 7 Scatter plots comparing observed and simulated Chungju dam inflow by artificial neural network for testing period
Fig. 8 Scatter plots comparing observed and simulated Soyangriver dam inflow by artificial neural network for testing period
Fig. 9 Time series of observed and simulated of Chungju dam inflow according to the meteorological range
Fig. 10 Time series of observed and simulated of Soyangriver dam inflow according to the meteorological range
Fig. 11 Time series of observed and simulated of Chungju dam inflow according to the use of area mean rainfall
Fig. 12 Time series of observed and simulated of Soyangriver dam inflow according to the use of area mean rainfall
Table 1 Thiessen area of Soyangriver dam watershed
Table 2 Thiessen area of Chungju dam watershed
Table 3 Type of Input rainfall in model
Table 4 Time lags and hidden node of each model
Table 5 Training and testing statics for each models
참고문헌
- Anctil, F., and A. Rat, 2005. Evaluation of neural network streamflow forecasting on 47 watershed. Journal of Hydrologic Engineering 10(1): 85-88. doi:10.1061/(ASCE)1084-0699(2005)10:1(85).
- Choi, S. Y., and K. Y. Han, 2011. Comparison and analysis for performance of flood stage prediction regression model according to type of input rainfall. Journal of Korean Society of Hazard Mitigation 11(5): 313-325 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.5.313
- Gupta, H., V. S. Sorooshian, and P. O. Yapo, 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering 4(2): 135-143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135).
- Hwang, J. S., S. Y. Choi, and H. S. Jeon, 2001. A classification analysis using bayesian neural network. Journal of Korean Data & Information Science Society 12(2): 11-25 (in Korean).
- Jang, D. W., D. G. Kim, Y. S. Kim, and W. I. Choi, 2018. Application of SWAT model considering spatial distribution of rainfall. Journal of Wetlands Research 20(1): 94-103 (in Korean). doi:10.17663/JWR.2018.20.1.094.
- Kang, M. S., M. G. Kang, S. W. Park, J. J. Lee, and K. H. Yoo, 2006. Application of grey model and artificial neural networks to flood forecasting. Journal of the American Water Resources Association 42(2): 473-486. doi:10.111/j.1752-1688.2006.tb03851.x.
- Kang, M. S., and S. W. Park, 2001. Forecasting long_term steamflow from a small waterhed using artificial neural network. Journal of the Korean Society of Agricultural Engineers 43(2): 69-77 (in Korean).
- Kang, M. S., and S. W. Park, 2003. Short-term flood forecasting using artificial neural networks. Journal of The Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
- Kim, H. L., K. S. Jun, and M. H. Choi, 2016. Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river. Journal of Korea Water Resources Association 49(7): 589-597 (in Korean). doi:10.3741/JKWRA.2016.49.7.589.
- Kim, M. E., J. M. Kim, S. J. Ye, J. B. Park, M. Y. Yun, and H. S. Shin, 2015. A study on water quality prediction model over midterm considering correlation between water quality and hydrologic factors. Journal of Korean Society of Hazard Mitigation 15(6): 459-470 (in Korean). doi: 10.9798/KOSHAM.2015.15.6.459.
- Kim, S. E., and I. W. Seo, 2015. Artificial neural network ensemble modeling with exploratory factor analysis for streamflow forecasting. Journal of Hydro informatics 17(4): 614-639 doi:10.2166/hydro.2015.033.
- Kim, S. E., and I. W. Seo, 2017. A study on improvement of generalization accuracy of artificial neural network modeling using factor analysis and cluster analysis: application to flow and water quality prediction. Water for Future 50(6): 31-40.
- Kim, S. H., J. M. So, S. U. Kang, and D. H. Bae, 2017. Development and evaluation of dam inflow prediction method based on bayesian method. Journal of Korea Water Resources Association 50(7): 489-502 (in Korean). doi: 10.3741/JKWRA.2017.50.7.489.
- Lee, G. S., S. C. Park, H. M. Lee, and Y. H. Jin, 2000. The prediction of runoff using artificial neural network in the Young-san River. Journal of Korea Water Resources Association 33(1): 251-256 (in Korean).
- Lee, J. H., and S. H. Yoon, 2005. Runoff analysis using spatially distributed rainfall data. Journal of Korea Society of Agricultural Engineers 47(6): 3-14 (in Korean). doi:10.5389/KSAE.2005.47.6.003.
- Lee, S. H., M. G. Kim, J. Y. Choi, and J. H. Bang, 2019. Estimating reference crop evapotranspiration using artificial neural network and temperature-based climatic data. Journal of the Korean Society of Agricultural Engineers 61(1): 95-105 (in Korean). doi:10.5389/KSAE.2019.61.1.095.
- Mahsa, M., and T. S. Lee, 2018. Comparison of optimization algorithms in deep learning-based neural networks for hydrological forecasting: case study of nam river daily runoff. Journal of Korean Society of Hazard Mitigation 18(6): 377-384 (in Korean). doi:10.9798/KOSHAM.2018.18.6.377.
- Minns, A. W., and M. J. Hall, 1996 Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3): 399-417. doi:10.1080/02626669609491511.
- Nash, J. E., and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10(3): 282-290. doi: 10.1016/0022-1694(70)90255-6.
- Park, H. K., and E. K. Kim, 2013. Study on the modelling of algal dynamics in lake paldang using artificial neural networks. Journal of Korean Society on Water Environment 29(1): 19-28 (in Korean).
- Park, J. C., N. Kim, and K. S. Ryoo, 2009. Improvement of inflow estimation data by precise measurement of water level in reservoir. Journal of the Environmental Sciences 18(3): 309-314 (in Korean). https://doi.org/10.5322/JES.2009.18.3.309
- Park, M. K., Y. S. Yoon, H. H. Lee, and J. H. Kim, 2018. Application of recurrent neural network for inflow prediction into multi-purpose dam basin. Journal of Korea Water Resources Association 51(12): 1217-1227 (in Korean). doi:10.3741/JKWRA.2018.51.12.1217.
- Pushpalatha, R., C. Perrin, N. L. Moine, and V. Andreassian, 2012. A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology 420-421: 171-182. doi:10.1016/j.jhydrol.2011.11.055.
- Ryu, Y. J., J. Y. Shin, W. S. Nam, and J. H. Heo, 2012. Forecast of the daily inflow with artificial neural network using wavelet transform at Chungju dam. Journal of Korea Water Resources Association 45(12): 1321-1330 (in Korean). doi:10.3741/JKWRA.2012.45.12.1321.
- Yoon, Y. N., 2007. Hydrology-basic and application. Paju: cheongmoongak.