Fig. 1 Schematic drawings of in-situ dynamic stiffness analyzer
Fig. 4 Test setup for IDSA on different specimens
Fig. 5 Typical waveforms obtained for the duration of 250 ms from the IDSA under a hammer impact
Fig. 6 Typical waveforms obtained for the duration of 100 ms from the IDSA under a hammer impact
Fig. 7 Calculation of displacement from the measured acceleration
Fig. 8 Results of dynamic analysis according to drop height of hammer at three different elastic materials
Fig. 9 Results of dynamic analysis according to drop height of hammer at compacted soil
Fig. 10 Stiffness according to drop height of hammer
Fig. 11 Young’s modulus estimated at four different materials
Fig. 2 Picture for three different elastic materials
Fig. 3 Calibration of strain gauges installed in the tip of IDSA.
Table 1 Index properties of the compacted soil
Table 2 Poisson’s ratio of the tested specimens
References
- American Society for Testing and Materials (ASTM), 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort, D1557.
- Byun, Y. H., and J. S. Lee, 2013. Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study. Geotechnical Testing Journal 36(4): 553-542. doi:10.1520/GTJ20120115.
- Byun, Y. H., H. K. Yoon, Y. S. Kim, S. S. H, and J. S. Lee, 2014. Active layer characterization by instrumented dynamic cone penetrometer in Ny-Alesund, Svalbard. Cold Regions Science and Technology 104: 45-53. doi:10.1016/j.coldregions.2014.04.003.
- Choi, C. Y., S. H. Lee, J. H. Bae, and D. H. Park, 2011. Evaluation of correlation between strain modulus and deformation modulus using cyclic plate loading test and LFWD. Journal of the Korean Geosynthetics Society 10(3): 33-41 (in Korean). https://doi.org/10.12814/JKGSS.2011.10.3.033
- Clayton, C. R. I., 2011. Stiffness at small strain: research and practice. Geotechnique 61(1): 5-37. doi:10.1680/geot.2011.61.1.5.
- Elhakim, A. F., K. Elbaz, and M. I. Amer, 2014. The use of light weight deflectometer for in situ evaluation of sand degree of compaction. HBRC Journal 10(3): 298-307. doi: 10.1016/j.hbrcj.2013.12.003.
- Fleming, P., M. Frost, and J. Lambert, 2007. Review of lightweight deflectometer for routine in situ assessment of pavement material stiffness. Journal of the Transportation Research Board 2004: 80-87. doi:10.3141/2004-09.
- Hoffmann, O., 2003. Enhancements and verification tests for portable deflectometers, 5-8. MN/RC-2003-10.
- Hong, W. T., C. Y. Choi, Y. J. Lim, and J. S. Lee, 2018. Stiffness characterization of subgrade using crosshole-type dynamic cone penetrometer. Journal of the Korean Geotechnical Society 34(2): 55-63 (in Korean). doi: 10.7843/kgs.2018.34.2.55.
- Hong, W. T., S. H. Kang, S. J. Lee, and J. S. Lee, 2015. Development of cone penetrometer for shear wave velocity assessment of track substructures. Journal of the Korean Society for Railway 5: 781-791 (in Korean). doi:10.14481/jkges.2015.16.2.45.
- Kang, H. B., K. J. Kim, S. K. Park, and J. R. Kim, 2008. A study on the relation between dynamic deflection modulus and in-situ CBR using a portable FWD. Journal of the Korea Institute for Structural Maintenance and Inspection 12(2): 149-155 (in Korean).
- Kim, D. S., C. Y. Choi, S. J. Kim, J. Y. Yu, and S. C. Yang, 2007. Study on the subgrade reaction modulus (K30) and strain modulus (Ev). Journal of the Korean Society for Railway 10(3): 264-270 (in Korean).
- Kim, D. S., W. S. Seo, and G. C. Kweon, 2005. Evaluation of field nonlinear modulus of subgrade soils using repetitive static plate bearing load test. Journal of the Korean Geotechnical Society 21(6): 67-79 (in Korean).
- Kim, K. S., 2015. Comparison of elastic moduli of subgrade soils using plate loading test, soil stiffness gauge and dynamic cone penetrometer. Journal of the Korean Geotechnical Society 31(3): 63-72 (in Korean). doi: 10.7843/kgs.2015.31.3.63.
- Kim, Y. I., J. Y. Kim, J. R. Shim, J. Choi, K. S. Kang, W. J. Baek, and K. I. Lee, 2014. Amechanical properties according to the compaction degree on weathered granite soil using lightweight dynamic cone penetrometer. Journal of the Korean Geosynthetics Society 13(3): 21-30 (in Korean). doi:10.12814/jkgss.2014.13.3.021.
- Lee, K. S., Y. H. Park, and K. H. Cho, 2015. A study on the application of railway using Pagani cone test. Journal of the Korean Society for Railway 2015: 462-468 (in Korean).
- Nazzal, M., M. Abu-Farsakh, K. Alshibli, and L. Mohammad, 2004. Evaluating the potential use of a portable LFWD for characterizing pavement layers and subgrades. Geotechnical Engineering for Transportation Projects 2004: 915-924. doi:10.1061/40744(154)79.
- Sawangsuriya, A., P. J. Bosscher, and T. B. Edil, 2002. Laboratory evaluation of the soil stiffness gauge. Journal of the Transportation Research Board 1808(1): 30-37. doi: 10.3141/1808-04.
- Seyman, E., 2003. Laboratory evaluation of in-situ tests as potential quality control/quality assurance tools. LSU Master's Theses. 2601.