DOI QR코드

DOI QR Code

위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea

  • Mun, Young-Sik (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Nam, Won-Ho (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Jeon, Min-Gi (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Kim, Taegon (Institute on the Environment, University of Minnesota) ;
  • Hong, Eun-Mi (School of Natural Resources and Environmental Science, Kangwon National University) ;
  • Hayes, Michael J. (School of Natural Resources, University of Nebraska-Lincoln) ;
  • Tsegaye, Tadesse (National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln)
  • 투고 : 2019.01.22
  • 심사 : 2019.03.05
  • 발행 : 2019.03.31

초록

Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

키워드

NGHHCI_2019_v61n2_1_f0001.png 이미지

Fig. 1 Research flow chart of the process for application of satellite-assisted precipitation products using CHIRPS

NGHHCI_2019_v61n2_1_f0002.png 이미지

Fig. 2 Percentage of stations in categories of drought as determined by SPI during the last 10 years (2008-2017)

NGHHCI_2019_v61n2_1_f0003.png 이미지

Fig. 3 Time series of the CHIRPS-based and station-based SPI (3-month, 6-month, and 12-month) using historical data (2008∼2017) for two weather stations (Ulsan in South Korea, and Singye in North Korea)

NGHHCI_2019_v61n2_1_f0004.png 이미지

Fig. 4 Time series of SPI maps in drought years (1994, 2000, and 2015) using CHIRPS-based and station-based SPI (6-month)

NGHHCI_2019_v61n2_1_f0005.png 이미지

Fig. 5 CHIRPS SPI map by time scale in 2017: (a) 3-month, (b) 6-month, (c) 9-month, and (d) 12-month)

Table 1 Summary of the global satellite-assisted precipitation products

NGHHCI_2019_v61n2_1_t0001.png 이미지

Table 2 Drought severity classification of SPI (Svoboda et al., 2002)

NGHHCI_2019_v61n2_1_t0002.png 이미지

Table 3 Summary of statistical Pearson’s correlation coefficient at monthly scale (2008-2017) from CHIRPS and meteorological station data

NGHHCI_2019_v61n2_1_t0003.png 이미지

Table 4 Summary of annual precipitation in 2017 for North Korea

NGHHCI_2019_v61n2_1_t0004.png 이미지

참고문헌

  1. Bae, D. H., K. H. Son, and H. A. Kim, 2013. Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea. Journal of Korea Water Resources Association 46(3): 287-299 (in Korea). doi:10.3741/jkwra.2013.46.3.287.
  2. Chang, Y. G., S. D. Kim, and G. W. Choi, 2006. A study of drought spatio-temporal characteristics using SPI-EOF Analysis. Journal of Korea Water Resources Association 39(8): 691-702 (in Korea). doi:10.3741/JKWRA.2006.39.8.691.
  3. Edwards, D. C., and T. B. McKee, 1997. Characteristics of 20th century drought in the United States at multiple time scales. 97-2. Fort Collins, Colorado Department of Atmospheric Science, Colorado State University.
  4. Funk, C., J. Michaelsen, J. Verdin, G. Artan, G. Husak, G. Senay, H. Gadain, and T. Magadzire, 2003. The collaborative historical African rainfall model - description and evaluation. International Journal of Climatology 23:47-66. doi:10.1002/joc.866.
  5. Funk, C., and J. Michaelsen, 2004. A simplified diagnostic model of orographic rainfall for enhancing satellite-based rainfall estimates in data poor regions. Journal of Applied Meteorology 43: 1366-1378. doi:10.1175/JAM2138.1.
  6. Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, J. Rowland, B. Romero, G. Husak, J. Michaelsen, and A. Verdin, 2014. A quasi-global precipitation time series for drought monitoring. US Geological Survey 832.doi:10.3133/ds832.
  7. Funk, C., A. Verdin, J. Michaelsen, S. Peterson, D. Pedreros, and G. Husak, 2015. A global satellite assisted precipitation climatology. Earth System Science Date 8:401-425. doi:10.5194/essdd-8-401-2015.
  8. Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, and G. Husak, 2015. The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Scientific Data 2: 150066. doi:10.1038/sdata.2015.66.
  9. Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80: 429-438. doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.
  10. Husak, G., J. Michaelsen, and C. Funk, 2007. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology 27(7): 935-944. doi:10.1002/joc.1441.
  11. Jang, S. M., J. Y. Rhee, S. K. Yoon, T. W. Lee, and K. W. Park, 2017. Evaluation of GPM IMERG applicability using SPI based satellite precipitation. Journal of the Korean Society of Agricultural Engineers 59(3): 29-39 (in Korea). doi:10.5389/KSAE.2017.59.3.029.
  12. Katsanos, D. T., A. N. Retalis, and S. Michaelides, 2016. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. National Center for Atmospheric Research 169(B): 459-464. doi: 10.1016/j.atmosres.2015.05.015.
  13. Kim, D. W., J. C. Park, and D. H. Jang, 2016. Analysis of the possibility for drought detection of spring season using SPI and NDVI. Journal of the Association of Korean Geographers 6(2): 165-174 (in Korea). doi:10.25202/jakg.6.2.5.
  14. Kim, G. B., H. H. Yun, and D. H. Kim, 2006. Relationship between standardized precipitation index and groundwater levels: A proposal for establishment of drought index wells. Journal of Soil and Groundwater Environment 11(3):31-42 (in Korea).
  15. Kim, M. S., and Y. I. Moon, 2014. A study on target standardized precipitation index in Korea. Journal of the Korean Society of Civil Engineers 34(4): 1117-1123 (in Korea). doi:10.12652/Ksce.2014.34.4.1117.
  16. Korea Meteorological Administration (KMA), 1995. 20 years report of meteorological observations in North Korea. Korea Meteorological Administration, Seoul, Korea.
  17. Korea Meteorological Administration (KMA), 2018. 2017 Abnormal climate report. Korea Meteorological Administration, Seoul, Korea.
  18. Krause, P., D. P. Boyle, and F. Base, 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geoscience 5: 89-97. https://doi.org/10.5194/adgeo-5-89-2005
  19. Kwon, M. S., K. S. Gun, M. H. Hwang, and T. W. Kim, 2015. Assessment of meteorological drought using cumulative severity of daily standardized precipitation index. Journal of the Korean Society of Hazard Mitigation 15(2): 123-131 (in Korea). doi:10.9798/kosham.2015.15.2.123.
  20. Lee, E. Y., 2013. Spatial characteristics of drought in South Korea by standard precipitation index, Konkuk University.
  21. Lee, J. W., and G. S. Kim, 2012. Development of a modified standardized precipitation index by considering effects of the dry period and rainfall. Journal of Korea Water Resources Association 45(4): 409-418 (in Korea). doi:10.3741/jkwra.2012.45.4.409.
  22. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
  23. Nam, W. H., E. M. Hong, J. Y. Choi, T. G. Kim, M. J. Hayes, and M. D. Svoboda, 2017. Assessment of the extreme 2014-2015 drought events in North Korea using weekly standardized precipitation evapotranspiration index (SPEI). Journal of the Korean Society of Agricultural Engineer 59(4): 65-74 (in Korean). doi:10.5389/KSAE.2017.59.4.065.
  24. Nam W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047.
  25. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2017. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50: 885-900.
  26. Park, C. E., 2017. Spatial and temporal aspects of drought in South Korea based on standardized precipitation index (SPI) and palmer drought severity index (PDSI). Journal of Agricultural, Life and Environmental Sciences 29(3):202-214 (in Korea). doi:10.12972/jales.20170019.
  27. Pricope, N. G., G. Husak, C. Funk, and J. Michaelsen, 2013. The climate-population nexus in the East African Horn: emerging degradation trends in rangeland and pastoral livelihood zones. Global Environment Change 23:1525-1541. doi:10.1016/j.gloenvcha.2013.10.002.
  28. Park, J. K., J. H. Lee, S. K. Yang, M. C. Kim, and S. E. Yang, 2016. Drought classification method for Jeju Island using standard precipitation index. Journal of Environmental Science International 25(11): 1511-1519 (in Korea). doi:10.5322/jesi.2016.25.11.1511.
  29. Seo, J. Y., 2011. Analysis on the statistical characteristics of drought in Korea using SPI and PDSI. Joong-bu University.
  30. Sternberg, T., 2011. Regional drought has a global impact. Nature 472: 169. doi:10.1038/472169d.
  31. Sheffield, J., E. F. Wood, and M. L. Roderick, 2012. Little change in global drought over the past 60 years. Nature 491: 435-438. doi:10.1038/nature11575.
  32. Shukla, S., A. McNally, G. Husak, and C. Funk, 2014. A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrology and Earth System Sciences 18: 3907-3921. doi:10.5194/hess-18-3907-2014.
  33. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181.
  34. Tote, C., D. Patricio, H. Boogaard, R. Wijgaart, E. Tarnavsky, and C. Funk, 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing 7: 1758-1776. doi:10.3390/rs70201758.
  35. WMO, 2009. Experts agree on a universal drought index to cope with climate risks. WMO Press Release 872.
  36. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. Kim, D. E. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineer 60(6): 121-131 (in Korean). doi:10.5389/KSAE.2018.60.6.121.