Fig. 1 Research flow chart of the process for application of satellite-assisted precipitation products using CHIRPS
Fig. 2 Percentage of stations in categories of drought as determined by SPI during the last 10 years (2008-2017)
Fig. 3 Time series of the CHIRPS-based and station-based SPI (3-month, 6-month, and 12-month) using historical data (2008∼2017) for two weather stations (Ulsan in South Korea, and Singye in North Korea)
Fig. 4 Time series of SPI maps in drought years (1994, 2000, and 2015) using CHIRPS-based and station-based SPI (6-month)
Fig. 5 CHIRPS SPI map by time scale in 2017: (a) 3-month, (b) 6-month, (c) 9-month, and (d) 12-month)
Table 1 Summary of the global satellite-assisted precipitation products
Table 2 Drought severity classification of SPI (Svoboda et al., 2002)
Table 3 Summary of statistical Pearson’s correlation coefficient at monthly scale (2008-2017) from CHIRPS and meteorological station data
Table 4 Summary of annual precipitation in 2017 for North Korea
참고문헌
- Bae, D. H., K. H. Son, and H. A. Kim, 2013. Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea. Journal of Korea Water Resources Association 46(3): 287-299 (in Korea). doi:10.3741/jkwra.2013.46.3.287.
- Chang, Y. G., S. D. Kim, and G. W. Choi, 2006. A study of drought spatio-temporal characteristics using SPI-EOF Analysis. Journal of Korea Water Resources Association 39(8): 691-702 (in Korea). doi:10.3741/JKWRA.2006.39.8.691.
- Edwards, D. C., and T. B. McKee, 1997. Characteristics of 20th century drought in the United States at multiple time scales. 97-2. Fort Collins, Colorado Department of Atmospheric Science, Colorado State University.
- Funk, C., J. Michaelsen, J. Verdin, G. Artan, G. Husak, G. Senay, H. Gadain, and T. Magadzire, 2003. The collaborative historical African rainfall model - description and evaluation. International Journal of Climatology 23:47-66. doi:10.1002/joc.866.
- Funk, C., and J. Michaelsen, 2004. A simplified diagnostic model of orographic rainfall for enhancing satellite-based rainfall estimates in data poor regions. Journal of Applied Meteorology 43: 1366-1378. doi:10.1175/JAM2138.1.
- Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, J. Rowland, B. Romero, G. Husak, J. Michaelsen, and A. Verdin, 2014. A quasi-global precipitation time series for drought monitoring. US Geological Survey 832.doi:10.3133/ds832.
- Funk, C., A. Verdin, J. Michaelsen, S. Peterson, D. Pedreros, and G. Husak, 2015. A global satellite assisted precipitation climatology. Earth System Science Date 8:401-425. doi:10.5194/essdd-8-401-2015.
- Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, and G. Husak, 2015. The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Scientific Data 2: 150066. doi:10.1038/sdata.2015.66.
- Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80: 429-438. doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.
- Husak, G., J. Michaelsen, and C. Funk, 2007. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology 27(7): 935-944. doi:10.1002/joc.1441.
- Jang, S. M., J. Y. Rhee, S. K. Yoon, T. W. Lee, and K. W. Park, 2017. Evaluation of GPM IMERG applicability using SPI based satellite precipitation. Journal of the Korean Society of Agricultural Engineers 59(3): 29-39 (in Korea). doi:10.5389/KSAE.2017.59.3.029.
- Katsanos, D. T., A. N. Retalis, and S. Michaelides, 2016. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. National Center for Atmospheric Research 169(B): 459-464. doi: 10.1016/j.atmosres.2015.05.015.
- Kim, D. W., J. C. Park, and D. H. Jang, 2016. Analysis of the possibility for drought detection of spring season using SPI and NDVI. Journal of the Association of Korean Geographers 6(2): 165-174 (in Korea). doi:10.25202/jakg.6.2.5.
- Kim, G. B., H. H. Yun, and D. H. Kim, 2006. Relationship between standardized precipitation index and groundwater levels: A proposal for establishment of drought index wells. Journal of Soil and Groundwater Environment 11(3):31-42 (in Korea).
- Kim, M. S., and Y. I. Moon, 2014. A study on target standardized precipitation index in Korea. Journal of the Korean Society of Civil Engineers 34(4): 1117-1123 (in Korea). doi:10.12652/Ksce.2014.34.4.1117.
- Korea Meteorological Administration (KMA), 1995. 20 years report of meteorological observations in North Korea. Korea Meteorological Administration, Seoul, Korea.
- Korea Meteorological Administration (KMA), 2018. 2017 Abnormal climate report. Korea Meteorological Administration, Seoul, Korea.
- Krause, P., D. P. Boyle, and F. Base, 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geoscience 5: 89-97. https://doi.org/10.5194/adgeo-5-89-2005
- Kwon, M. S., K. S. Gun, M. H. Hwang, and T. W. Kim, 2015. Assessment of meteorological drought using cumulative severity of daily standardized precipitation index. Journal of the Korean Society of Hazard Mitigation 15(2): 123-131 (in Korea). doi:10.9798/kosham.2015.15.2.123.
- Lee, E. Y., 2013. Spatial characteristics of drought in South Korea by standard precipitation index, Konkuk University.
- Lee, J. W., and G. S. Kim, 2012. Development of a modified standardized precipitation index by considering effects of the dry period and rainfall. Journal of Korea Water Resources Association 45(4): 409-418 (in Korea). doi:10.3741/jkwra.2012.45.4.409.
- Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
- Nam, W. H., E. M. Hong, J. Y. Choi, T. G. Kim, M. J. Hayes, and M. D. Svoboda, 2017. Assessment of the extreme 2014-2015 drought events in North Korea using weekly standardized precipitation evapotranspiration index (SPEI). Journal of the Korean Society of Agricultural Engineer 59(4): 65-74 (in Korean). doi:10.5389/KSAE.2017.59.4.065.
- Nam W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047.
- Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2017. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50: 885-900.
- Park, C. E., 2017. Spatial and temporal aspects of drought in South Korea based on standardized precipitation index (SPI) and palmer drought severity index (PDSI). Journal of Agricultural, Life and Environmental Sciences 29(3):202-214 (in Korea). doi:10.12972/jales.20170019.
- Pricope, N. G., G. Husak, C. Funk, and J. Michaelsen, 2013. The climate-population nexus in the East African Horn: emerging degradation trends in rangeland and pastoral livelihood zones. Global Environment Change 23:1525-1541. doi:10.1016/j.gloenvcha.2013.10.002.
- Park, J. K., J. H. Lee, S. K. Yang, M. C. Kim, and S. E. Yang, 2016. Drought classification method for Jeju Island using standard precipitation index. Journal of Environmental Science International 25(11): 1511-1519 (in Korea). doi:10.5322/jesi.2016.25.11.1511.
- Seo, J. Y., 2011. Analysis on the statistical characteristics of drought in Korea using SPI and PDSI. Joong-bu University.
- Sternberg, T., 2011. Regional drought has a global impact. Nature 472: 169. doi:10.1038/472169d.
- Sheffield, J., E. F. Wood, and M. L. Roderick, 2012. Little change in global drought over the past 60 years. Nature 491: 435-438. doi:10.1038/nature11575.
- Shukla, S., A. McNally, G. Husak, and C. Funk, 2014. A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrology and Earth System Sciences 18: 3907-3921. doi:10.5194/hess-18-3907-2014.
- Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181.
- Tote, C., D. Patricio, H. Boogaard, R. Wijgaart, E. Tarnavsky, and C. Funk, 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing 7: 1758-1776. doi:10.3390/rs70201758.
- WMO, 2009. Experts agree on a universal drought index to cope with climate risks. WMO Press Release 872.
- Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. Kim, D. E. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineer 60(6): 121-131 (in Korean). doi:10.5389/KSAE.2018.60.6.121.