References
- Abdullah LN and Chow EK (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2, 3 https://doi.org/10.1186/2001-1326-2-3
- Holen KD and Saltz LB (2001) New therapies, new directions: advances in the systemic treatment of metastatic colorectal cancer. Lancet Oncol 2, 290-297 https://doi.org/10.1016/S1470-2045(00)00324-7
- O'Reilly EA, Gubbins L, Sharma S et al (2015) The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin 3, 257-275 https://doi.org/10.1016/j.bbacli.2015.03.003
- Bleau AM, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226-235 https://doi.org/10.1016/j.stem.2009.01.007
- Zhou W, Fong MY, Min Y et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501-515 https://doi.org/10.1016/j.ccr.2014.03.007
- Hanahan D and Weinberg RA (2000) The hallmarks of cancer. Cell 100, 57-70 https://doi.org/10.1016/S0092-8674(00)81683-9
- Deanfield JE, Halcox JP and Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115, 1285-1295 https://doi.org/10.1161/CIRCULATIONAHA.106.652859
- Lee A, Papangeli I, Park Y et al (2017) A PPARgammadependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis. Sci Rep 7, 2528 https://doi.org/10.1038/s41598-017-02852-4
- Jo HN, Kang H, Lee A et al (2017) Endothelial miR-26a regulates VEGF-Nogo-B receptor-mediated angiogenesis. BMB Rep 50, 384-389 https://doi.org/10.5483/BMBRep.2017.50.7.085
- Butler JM, Kobayashi H and Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10, 138-146 https://doi.org/10.1038/nrc2791
- Gilbert LA and Hemann MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355-366 https://doi.org/10.1016/j.cell.2010.09.043
- Folberg R and Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112, 508-525 https://doi.org/10.1111/j.1600-0463.2004.apm11207-0810.x
- Kirschmann DA, Seftor EA, Hardy KM, Seftor RE and Hendrix MJ (2012) Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 18, 2726-2732 https://doi.org/10.1158/1078-0432.CCR-11-3237
- Cao Z, Bao M, Miele L, Sarkar FH, Wang Z and Zhou Q (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49, 3914-3923 https://doi.org/10.1016/j.ejca.2013.07.148
- Wagenblast E, Soto M, Gutierrez-Angel S et al (2015) A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520, 358-362 https://doi.org/10.1038/nature14403
- Hendrix MJ, Seftor EA, Hess AR and Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3, 411-421 https://doi.org/10.1038/nrc1092
- Williamson SC, Metcalf RL, Trapani F et al (2016) Vascu logenic mimicry in small cell lung cancer. Nat Commun 7, 13322 https://doi.org/10.1038/ncomms13322
- Bharti R, Dey G and Mandal M (2016) Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer Lett 375, 51-61 https://doi.org/10.1016/j.canlet.2016.02.048
- Dijkgraaf EM, Welters MJ, Nortier JW, van der Burg SH and Kroep JR (2012) Interleukin-6/interleukin-6 receptor pathway as a new therapy target in epithelial ovarian cancer. Curr Pharm Des 18, 3816-3827 https://doi.org/10.2174/138161212802002797
- Rossi JF, Lu ZY, Jourdan M and Klein B (2015) Interleukin-6 as a therapeutic target. Clin Cancer Res 21, 1248-1257 https://doi.org/10.1158/1078-0432.CCR-14-2291
- Wang Y, Niu XL, Qu Y et al (2010) Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett 295, 110-123 https://doi.org/10.1016/j.canlet.2010.02.019
- Hong L, Sharp T, Khorsand B et al (2016) MicroRNA-200c Represses IL-6, IL-8, and CCL-5 Expression and Enhances Osteogenic Differentiation. PLoS One 11, e0160915 https://doi.org/10.1371/journal.pone.0160915
- Zhang W, Shen X, Xie L, Chu M and Ma Y (2015) Micro-RNA-181b regulates endotoxin tolerance by targeting IL-6 in macrophage RAW264.7 cells. J Inflamm (Lond) 12, 18 https://doi.org/10.1186/s12950-015-0061-8
- Hunter CA and Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16, 448-457 https://doi.org/10.1038/ni.3153
- Kanda T and Takahashi T (2004) Interleukin-6 and cardiovascular diseases. Jpn Heart J 45, 183-193 https://doi.org/10.1536/jhj.45.183
- Chen SC, Chang YL, Wang DL and Cheng JJ (2006) Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol 148, 226-232 https://doi.org/10.1038/sj.bjp.0706647
- Zhang GJ and Adachi I (1999) Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 19, 1427-1432
- Nakashima J, Tachibana M, Horiguchi Y et al (2000) Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res 6, 2702-2706
- Seymour JF, Talpaz M, Cabanillas F, Wetzler M and Kurzrock R (1995) Serum interleukin-6 levels correlate with prognosis in diffuse large-cell lymphoma. J Clin Oncol 13, 575-582 https://doi.org/10.1200/JCO.1995.13.3.575
- Jansson MD and Lund AH (2012) MicroRNA and cancer. Mol Oncol 6, 590-610 https://doi.org/10.1016/j.molonc.2012.09.006
- Kim J (2018) MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. BMB Rep 51, 65-72 https://doi.org/10.5483/BMBRep.2018.51.2.011
- Lee A, McLean D, Choi J, Kang H, Chang W and Kim J (2014) Therapeutic implications of microRNAs in pulmonary arterial hypertension. BMB Rep 47, 311-317 https://doi.org/10.5483/BMBRep.2014.47.6.085
- Kang H, Park Y, Lee A et al (2017) Negative regulation of NOD1 mediated angiogenesis by PPARgamma-regulated miR-125a. Biochem Biophys Res Commun 482, 28-34 https://doi.org/10.1016/j.bbrc.2016.11.032
- Li Z, Pan W, Shen Y et al (2018) IGF1/IGF1R and micro- RNA let-7e down-regulate each other and modulate proliferation and migration of colorectal cancer cells. Cell Cycle 17, 1212-1219 https://doi.org/10.1080/15384101.2018.1469873
- Shan Y, Liu Y, Zhao L, Liu B, Li Y and Jia L (2017) MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 90, 48-58 https://doi.org/10.1016/j.biocel.2017.07.016
- Xiao M, Cai J, Cai L et al (2017) Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res 10, 24 https://doi.org/10.1186/s13048-017-0321-8
- Zhu WY, Luo B, An JY et al (2014) Differential expression of miR-125a-5p and let-7e predicts the progression and prognosis of non-small cell lung cancer. Cancer Invest 32, 394-401 https://doi.org/10.3109/07357907.2014.922569
- Huang P, Mao LF, Zhang ZP et al (2018) Down-Regulated miR-125a-5p Promotes the Reprogramming of Glucose Metabolism and Cell Malignancy by Increasing Levels of CD147 in Thyroid Cancer. Thyroid 28, 613-623 https://doi.org/10.1089/thy.2017.0401
- Naidu S, Shi L, Magee P et al (2017) PDGFR-modulated miR-23b cluster and miR-125a-5p suppress lung tumorigenesis by targeting multiple components of KRAS and NF-kB pathways. Sci Rep 7, 15441 https://doi.org/10.1038/s41598-017-14843-6
- Lu G, Ma Y, Jia C et al (2017) Reduced miR-125a levels associated with poor survival of patients with hepatocellular cancer. Oncol Lett 14, 5952-5958
- McCall MN, Kent OA, Yu J, Fox-Talbot K, Zaiman AL and Halushka MK (2011) MicroRNA profiling of diverse endothelial cell types. BMC Med Genomics 4, 78 https://doi.org/10.1186/1755-8794-4-78
- Sun M, Guo S, Yao J et al (2019) MicroRNA-125a suppresses cell migration, invasion, and regulates hyaluronic acid synthase 1 expression by targeting signal transducers and activators of transcription 3 in renal cell carcinoma cells. J Cell Biochem 120, 1894-1902 https://doi.org/10.1002/jcb.27503
- Zhang Y, Zhang Q, Gui L et al (2018) Let-7e inhibits TNF-alpha expression by targeting the methyl transferase EZH2 in DENV2-infected THP-1 cells. J Cell Physiol 233, 8605-8616 https://doi.org/10.1002/jcp.26576
- Schnegg CI, Yang MH, Ghosh SK and Hsu MY (2015) Induction of Vasculogenic Mimicry Overrides VEGF-A Silencing and Enriches Stem-like Cancer Cells in Melanoma. Cancer Res 75, 1682-1690 https://doi.org/10.1158/0008-5472.CAN-14-1855
- van der Schaft DW, Seftor RE, Seftor EA et al (2004) Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96, 1473-1477 https://doi.org/10.1093/jnci/djh267