DOI QR코드

DOI QR Code

WEAK LAWS OF LARGE NUMBERS FOR WEIGHTED COORDINATEWISE PAIRWISE NQD RANDOM VECTORS IN HILBERT SPACES

  • Le, Dung Van (Department of Mathematics The University of Da Nang - University of Science and Education) ;
  • Ta, Son Cong (Faculty of Mathematics Mechanics and Informatics VNU Hanoi University of Science) ;
  • Tran, Cuong Manh (Faculty of Mathematics Mechanics and Informatics VNU Hanoi University of Science)
  • Received : 2018.04.03
  • Accepted : 2018.08.24
  • Published : 2019.03.01

Abstract

In this paper, we investigate weak laws of large numbers for weighted coordinatewise pairwise negative quadrant dependence random vectors in Hilbert spaces in the case that the decay order of tail probability is r for some 0 < r < 2. Moreover, we extend results concerning Pareto-Zipf distributions and St. Petersburg game.

Keywords

References

  1. A. Adler, An exact weak law of large numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 417-422.
  2. H. Dehling, O. Sh. Sharipov, and M. Wendler, Bootstrap for dependent Hilbert space- valued random variables with application to von Mises statistics, J. Multivariate Anal. 133 (2015), 200-215. https://doi.org/10.1016/j.jmva.2014.09.011
  3. L. V. Dung, T. C. Son, and N. T. H. Yen, Weak laws of large numbers for se- quences of random variables with infinite rth moments, Acta Math. Hungar. (2018), doi.org/10.1007/s10474-018-0865-0.
  4. W. Feller, Note on the law of large numbers and "fair" games, Ann. Math. Statistics 16 (1945), 301-304. https://doi.org/10.1214/aoms/1177731094
  5. W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, Inc., New York, 1966.
  6. A. Gut, Limit theorems for a generalized St Petersburg game, J. Appl. Probab. 47 (2010), no. 3, 752-760. https://doi.org/10.1239/jap/1285335407
  7. A. Gut, Probability: A Graduate Course, second edition, Springer Texts in Statistics, Springer, New York, 2013.
  8. N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinate- wise negatively associated random vectors in Hilbert spaces, Acta Math. Hungar. 144 (2014), no. 1, 132-149. https://doi.org/10.1007/s10474-014-0424-2
  9. K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295. https://doi.org/10.1214/aos/1176346079
  10. M.-H. Ko, Complete convergence for coordinatewise asymptotically negatively associated random vectors in Hilbert spaces, Comm. Statist. Theory Methods 47 (2018), no. 3, 671- 680. https://doi.org/10.1080/03610926.2017.1310242
  11. M.-H. Ko, T.-S. Kim, and K.-H. Han, A note on the almost sure convergence for de- pendent random variables in a Hilbert space, J. Theoret. Probab. 22 (2009), no. 2, 506-513. https://doi.org/10.1007/s10959-008-0144-z
  12. E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153. https://doi.org/10.1214/aoms/1177699260
  13. D. Li, A. Rosalsky, and A. I. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
  14. R. Li and W. Yang, Strong convergence of pairwise NQD random sequences, J. Math. Anal. Appl. 344 (2008), no. 2, 741-747. https://doi.org/10.1016/j.jmaa.2008.02.053
  15. P. A. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213. https://doi.org/10.1016/0167-7152(92)90191-7
  16. T. Nakata, Weak laws of large numbers for weighted independent random variables with infinite mean, Statist. Probab. Lett. 109 (2016), 124-129. https://doi.org/10.1016/j.spl.2015.11.017
  17. Q. Y. Wu, Convergence properties of pairwise NQD random sequences, Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 3, 617-624. https://doi.org/10.3321/j.issn:0583-1431.2002.03.027