DOI QR코드

DOI QR Code

AREA DISTORTION UNDER MEROMORPHIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSION

  • Bhowmik, Bappaditya (Department of Mathematics Indian Institute of Technology Kharagpur) ;
  • Satpati, Goutam (Department of Mathematics Indian Institute of Technology Kharagpur)
  • Received : 2018.03.30
  • Accepted : 2018.09.19
  • Published : 2019.03.01

Abstract

Let ${\Sigma}_k(p)$ be the class of univalent meromorphic functions defined on the unit disc ${\mathbb{D}}$ with k-quasiconformal extension to the extended complex plane ${\hat{\mathbb{C}}}$, where $0{\leq}k<1$. Let ${\Sigma}^0_k(p)$ be the class of functions $f{\in}{\Sigma}_k(p)$ having expansion of the form $f(z)=1/(z-p)+{\sum_{n=1}^{\infty}}\;b_nz^n$ on ${\mathbb{D}}$. In this article, we obtain sharp area distortion and weighted area distortion inequalities for functions in ${\sum_{k}^{0}}(p)$. As a consequence of the obtained results, we present a sharp upper bound for the Hilbert transform of characteristic function of a Lebesgue measurable subset of ${\mathbb{D}}$.

Keywords

References

  1. K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37-60. https://doi.org/10.1007/BF02392568
  2. K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press, Princeton, NJ, 2009.
  3. K. Astala and V. Nesi, Composites and quasiconformal mappings: new optimal bounds in two dimensions, Calc. Var. Partial Differential Equations 18 (2003), no. 4, 335-355. https://doi.org/10.1007/s00526-003-0145-9
  4. F. G. Avkhadiev and K.-J. Wirths, A proof of the Livingston conjecture, Forum Math. 19 (2007), no. 1, 149-157. https://doi.org/10.1515/FORUM.2007.007
  5. B. Bhowmik, S. Ponnusami, and K. Virs, Concave functions, Blaschke products, and polygonal mappings, Sib. Math. J. 50 (2009), no. 4, 609-615; translated from Sibirsk. Mat. Zh. 50 (2009), no. 4, 772-779. https://doi.org/10.1007/s11202-009-0068-6
  6. B. Bhowmik and G. Satpati, On some results for a class of meromorphic functions having quasiconformal extension, Proc. Indian Acad. Sci. Math. Sci. 2018 (2018), 128:61, no. 5.
  7. B. Bhowmik, G. Satpati, and T. Sugawa, Quasiconformal extension of meromorphic functions with nonzero pole, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2593-2601. https://doi.org/10.1090/proc/12933
  8. B. V. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661-664.
  9. P. N. Chichra, An area theorem for bounded univalent functions, Proc. Cambridge Philos. Soc. 66 (1969), 317-321. https://doi.org/10.1017/S030500410004500X
  10. A. Eremenko and D. H. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2793-2797. https://doi.org/10.1090/S0002-9939-1995-1283548-8
  11. F. W. Gehring and E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 388 (1966), 15 pp.
  12. J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25-27. https://doi.org/10.1307/mmj/1028998616
  13. S. L. Krushkal, Exact coefficient estimates for univalent functions with quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 349-357.
  14. R. Kuhnau and W. Niske, Abschatzung des dritten Koeffizienten bei den quasikonform fortsetzbaren schlichten Funktionen der Klasse S, Math. Nachr. 78 (1977), 185-192. https://doi.org/10.1002/mana.19770780115
  15. O. Lehto, Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. A I No. 500 (1971), 10 pp.
  16. O. Lehto, Univalent functions and Teichmuller spaces, Graduate Texts in Mathematics, 109, Springer-Verlag, New York, 1987.
  17. A. E. Livingston, Convex meromorphic mappings, Ann. Polon. Math. 59 (1994), no. 3, 275-291. https://doi.org/10.4064/ap-59-3-275-291
  18. J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), no. 4, 607-613. https://doi.org/10.1090/S0002-9939-1980-0587937-5