Acknowledgement
Supported by : National Natural Science Foundation of China
References
- H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281-322.
- D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.
- G. Chen and X. Cheng, An important class of conformally at weak Einstein Finsler metrics, Internat. J. Math. 24 (2013), no. 1, 1350003, 15 pp.
-
G. Chen, Q. He, and Z. Shen, On conformally at
$({\alpha},\,{\beta})$ -metrics with constant ag curvature, Publ. Math. Debrecen 86 (2015), no. 3-4, 387-400. https://doi.org/10.5486/PMD.2015.7016 - X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340. https://doi.org/10.1007/s11856-009-0013-1
-
X. Cheng, Z. Shen, and Y. Tian, A class of Einstein
$({\alpha},\,{\beta})$ -metrics, Israel J. Math. 192 (2012), no. 1, 221-249. https://doi.org/10.1007/s11856-012-0036-x - X. Cheng and M. Yuan, On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen 84 (2014), no. 1-2, 63-74. https://doi.org/10.5486/PMD.2014.5833
- S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- M. Hashuiguchi and Y. Ichijyo, On conformal transformations of Wagner spaces, Rep. Fac. Sci. Kagoshima Univ. No. 10 (1977), 19-25.
-
S. Hojo, M. Matsumoto, and K. Okubo, Theory of conformally Berwald Finsler spaces and its applications to
$({\alpha},\,{\beta})$ -metrics, Balkan J. Geom. Appl. 5 (2000), no. 1, 107-118. - Y. Ichijyo and M. Hashuiguchi, On the condition that a Randers space be conformally flat, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 22 (1989), 7-14.
- L. Kang, On conformally at Randers metrics, Sci. Sin. Math. 41 (2011), no. 5, 439-446. https://doi.org/10.1360/012010-910
- S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.) 55 (1994), no. 1, 97-100.
- M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. Natl. Acad. Sci. USA 15 (1929), 376-379. https://doi.org/10.1073/pnas.15.4.376
- H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
-
Z. Shen, On Lansberg
$({\alpha},\,{\beta})$ -metrics, https://www.math.iupui.edu/-zshen/Research/ papers/LandsbergCurvatureAlphaBeta2006.pdf.