DOI QR코드

DOI QR Code

ON CONFORMALLY FLAT POLYNOMIAL (α, β)-METRICS WITH WEAKLY ISOTROPIC SCALAR CURVATURE

  • Chen, Bin (School of Mathematical Sciences Tongji University) ;
  • Xia, KaiWen (School of Mathematical Sciences Tongji University)
  • Received : 2018.03.15
  • Accepted : 2018.06.26
  • Published : 2019.03.01

Abstract

In this paper, we study conformally flat (${\alpha}$, ${\beta}$)-metrics in the form $F={\alpha}(1+{\sum_{j=1}^{m}}\;a_j({\frac{\beta}{\alpha}})^j)$ with $m{\geq}2$, where ${\alpha}$ is a Riemannian metric and ${\beta}$ is a 1-form on a smooth manifold M. We prove that if such conformally flat (${\alpha}$, ${\beta}$)-metric F is of weakly isotropic scalar curvature, then it must has zero scalar curvature. Moreover, if $a_{m-1}a_m{\neq}0$, then such metric is either locally Minkowskian or Riemannian.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281-322.
  2. D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.
  3. G. Chen and X. Cheng, An important class of conformally at weak Einstein Finsler metrics, Internat. J. Math. 24 (2013), no. 1, 1350003, 15 pp.
  4. G. Chen, Q. He, and Z. Shen, On conformally at $({\alpha},\,{\beta})$-metrics with constant ag curvature, Publ. Math. Debrecen 86 (2015), no. 3-4, 387-400. https://doi.org/10.5486/PMD.2015.7016
  5. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340. https://doi.org/10.1007/s11856-009-0013-1
  6. X. Cheng, Z. Shen, and Y. Tian, A class of Einstein $({\alpha},\,{\beta})$-metrics, Israel J. Math. 192 (2012), no. 1, 221-249. https://doi.org/10.1007/s11856-012-0036-x
  7. X. Cheng and M. Yuan, On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen 84 (2014), no. 1-2, 63-74. https://doi.org/10.5486/PMD.2014.5833
  8. S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
  9. M. Hashuiguchi and Y. Ichijyo, On conformal transformations of Wagner spaces, Rep. Fac. Sci. Kagoshima Univ. No. 10 (1977), 19-25.
  10. S. Hojo, M. Matsumoto, and K. Okubo, Theory of conformally Berwald Finsler spaces and its applications to $({\alpha},\,{\beta})$-metrics, Balkan J. Geom. Appl. 5 (2000), no. 1, 107-118.
  11. Y. Ichijyo and M. Hashuiguchi, On the condition that a Randers space be conformally flat, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. 22 (1989), 7-14.
  12. L. Kang, On conformally at Randers metrics, Sci. Sin. Math. 41 (2011), no. 5, 439-446. https://doi.org/10.1360/012010-910
  13. S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.) 55 (1994), no. 1, 97-100.
  14. M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. Natl. Acad. Sci. USA 15 (1929), 376-379. https://doi.org/10.1073/pnas.15.4.376
  15. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
  16. Z. Shen, On Lansberg $({\alpha},\,{\beta})$-metrics, https://www.math.iupui.edu/-zshen/Research/ papers/LandsbergCurvatureAlphaBeta2006.pdf.