References
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), no. 6, 567-580. https://doi.org/10.1080/00927878308822865
-
W. Chen, On semiabelian
$\pi$ -regular rings, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 63171, 10 pp. https://doi.org/10.1155/2007/63171 - P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
- J. Han, Y. Lee, and S. Park, Semicentral idempotents in a ring, J. Korean Math. Soc. 51 (2014), no. 3, 463-472. https://doi.org/10.4134/JKMS.2014.51.3.463
- V. K. Harchenko, T. J. Laey, and J. Zemanek, A characterization of central idempotents, Bull. Acad. Pol. Sci. Ser. Sci. Math. 29 (1981), no. 1-2, 43-46.
- I. Kaplansky, Rings of operators. Notes prepared by S. Berberian with an appendix by R. Blattner, Mathematics 337A, summer 1955.
- N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
- N. K. Kim, Y. Lee, and Y. Seo, Structure of idempotents in rings without identity, J. Korean Math. Soc. 51 (2014), no. 4, 751-771. https://doi.org/10.4134/JKMS.2014.51.4.751
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
- G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. https://doi.org/10.1016/S0021-8693(03)00301-6
- L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
- B. H. Shafee and S. K. Nauman, On extensions of right symmetric rings without identity, Adv. Pure Math. 4 (2014), no. 12, 665-673. https://doi.org/10.4236/apm.2014.412075
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974). https://doi.org/10.1090/S0002-9947-1973-0338058-9
- J. Wei, Almost Abelian rings, Commun. Math. 21 (2013), no. 1, 15-30.