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Introduction
Artificial intelligence (AI) has evolved from the concept 

of strong AI, which imitates human intelligence, to the im-
plementation of weak AI that can solve certain problems.1 
Studies of weak AI explore ways to construct algorithms 
that can learn from data and make predictions. Machine 
learning is a branch of computer science that builds al-
gorithms guided by data.2 Among them, neural networks 

(NNs), which consist of nodes and weights, were one of 
the first types of AI algorithms to be developed. The com-
putational power of these networks relies on the quality 
and quantity of training data, which allow these networks 
to update the weights of the connections. Simple network 
structures with only a few layers are known as “shallow” 
learning neural networks, whereas network structures that 
employ numerous and large layers are referred to as “deep” 

learning neural networks.3 Deep learning structures re-
ferred to as convolutional neural networks (CNNs), which 
can extract many features from abstracted layers of filters, 
are mainly used for processing large and complex images. 
Deep learning is being accelerated by the development of 
self-learning back-propagation algorithms that progressive-
ly refine the results from the data, as well as by increases 
in computational power. Due to these rapid technological 
advances, AI, represented by deep learning, can be used for 
real-life problems and is applied across all sectors of soci-
ety.4 The diagnostic accuracy of deep learning algorithms 
in the medical field is approaching levels of human exper-
tise, changing the role of computer-assisted diagnosis from 
a ‘second-opinion’ tool to a more collaborative one.3 The 
development of AI applications in the dental field is also 
remarkable.1,2 In this article, papers about deep learning ap-
plied to the field of oral and maxillofacial radiology will be 
reviewed.

Materials and Methods
Search strategy
In PubMed, Scopus, and the IEEE Xplore Digital Library, 

An overview of deep learning in the field of dentistry

Jae-Joon Hwang 1, Yun-Hoa Jung 1, Bong-Hae Cho 1, Min-Suk Heo 2,*
1Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea 
2Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea

ABSTRACT

Purpose: Artificial intelligence (AI), represented by deep learning, can be used for real-life problems and is applied 
across all sectors of society including medical and dental field. The purpose of this study is to review articles about 
deep learning that were applied to the field of oral and maxillofacial radiology.
Materials and Methods: A systematic review was performed using Pubmed, Scopus, and IEEE explore databases to 
identify articles using deep learning in English literature. The variables from 25 articles included network architecture, 
number of training data, evaluation result, pros and cons, study object and imaging modality.
Results: Convolutional Neural network (CNN) was used as a main network component. The number of published 
paper and training datasets tended to increase, dealing with various field of dentistry.
Conclusion: Dental public datasets need to be constructed and data standardization is necessary for clinical application 
of deep learning in dental field. (Imaging Sci Dent 2019; 49: 1-7)

KEY WORDS: ‌�Artificial Intelligence; Deep Learning; Dentistry; Radiology

Copyright ⓒ 2019 by Korean Academy of Oral and Maxillofacial Radiology
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)  

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Imaging Science in Dentistry·pISSN 2233-7822 eISSN 2233-7830

*This study was supported by 2017 Clinical Research Grant from Pusan National 
University Dental Hospital.
Received November 27, 2018; Revised December 15, 2018; Accepted December 17, 2018
*Correspondence to: Prof. Min-Suk Heo. Department of Oral and Maxillofacial 
Radiology, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, 
Seoul 03080, Korea 
Tel) 82-2-2072-3016, E-mail) hmslsh@snu.ac.kr

https://orcid.org/0000-0003-0379-8460
https://orcid.org/0000-0003-4431-6763
https://orcid.org/0000-0002-8292-6119
https://orcid.org/0000-0003-3406-0645


An overview of deep learning in the field of dentistry

- 2 -

a search was performed for ‘deep learning OR neural net-
work’ and ‘dental AND (diagnosis OR detection OR clas-
sification OR segmentation)’ extending through December 
2018, and 144, 33, and 32 search results were obtained, re-
spectively. A total of 25 peer-reviewed papers were obtained 
by removing articles not written in English, those focusing 
on non-dental fields, papers not related to imaging dentistry, 
as well as reviews, editorials, and in-press papers. The mul-
tilayer perceptron emerged as an early field of deep learn-
ing, and papers on this topic were excluded from this study 
because it is not a true end-to-end learning method-it 
learns features extracted from images using existing ma-
chine learning algorithms-and it has shallow networks and 
limited accuracy when the number of layers is increased.5

Data extraction
Study-specific data describing deep learning architecture, 

the size of the training datasets, evaluation results, advan-
tages and disadvantages, the object of the study, and imag-
ing modality were collected, in addition to other variables 
such as author and publication year.

Results
The data extracted from the selected papers are summa-

rized in Table 1.
In all studies, CNN was used as a main network compo-

nent, and there were also studies using various other types 
of networks, such as long short-term memory and siamese 
networks, in addition to CNNs. CNN-based papers have 
appeared in the field of dentistry since 2016, and subse-
quently, more and more dentistry papers using CNN have 
been published (Fig. 1).

The median size of the datasets used for training also 
tended to increase, from 100 units to 1000 units (Fig. 2).

Many papers that used pretrained networks such as Alex-
net, VGG, GoogLeNet, and Inception v3 showed good re-
sults for general purposes.31 However, the structure of CNN 
networks tends to change from networks with shallow lay-
ers to deeper or problem-specific home-made or complex 
networks.

These studies dealt with various field of dentistry. Most 
of them were related to teeth, but other subjects such as the 
gingiva and periodontium, the dental arch, osteoporosis, 
and anatomical landmarks were also studied using deep 
learning (Table 2).

Various imaging modalities have been studied in con-
junction with the abovementioned subjects. Efforts are 
underway to diagnose dental disease using traditional 2-di-

mensional radiographs (intraoral and panoramic), as well 
as using 3-dimensional cone-beam computed tomography 

(CBCT). Other studies have investigated new modalities 
in dental applications, such as quantitative light-induced 
fluorescence, optical coherence tomography, and the use of 
intra-oral laser scanners.

Discussion
Computer assisted diagnosis (CAD) software in the med-

ical field has been used to obtain second opinions, but the 
design and tuning of conventional CAD tends to be very 
arduous. Recently, deep learning techniques have been in-
tegrated into CAD, with promising results for various med-
ical applications.32,33 The qualitative and quantitative ap-
plications of deep learning in dentistry are also expanding, 
but certain areas need to be complemented to promote the 
continued development of deep learning research in oral 
and maxillofacial radiology.

However, because all the data sets used in the research 
analyzed herein were in-house, objective comparison of 
the studies was difficult. Only a single study tried to evalu-
ate the accuracy of developed networks using other public 
datasets.23 Efforts are needed to develop a public dataset, 
such as in the medical field,34 to develop algorithms that 
can be used in clinical applications. In order to achieve 
this, researchers need to release the data used in their pa-
pers with appropriate removal of personal information, and 
legal and institutional support from each country is also 
necessary.35,36 There is also a need to build a common, free 
repository that can reliably collect, catalog, and archive 
publicly available data in the dental field.

The overall increase in the size of training datasets is 
desirable for clinical applications of deep learning to the 
dental field. However, most studies used relatively small 
data sets (fewer than 1000 units per group), and the accu-
racy of most studies was less than 90%. This is below the 
clinically expected accuracy of 98%-99%.37 Deep learning 
requires a large amount of data because it learns features 
directly from the data via an end-to-end process. In an an-
atomical classification study of CT data, at least 1,000 data 
sets per group were required to achieve 98% validation 
accuracy with deep learning, and 4,092 data sets per group 
were required to reach the desired accuracy of 99.5%.38 
CBCT, which is the most popular 3D imaging modality in 
the dental field, does not utilize defined Hounsfield unit 
values like medical CT, and the pixel values of the acquired 
images change at every exposure.39 The image quality and 
magnification of panoramic radiographs, which are com-
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monly used in dental practice, depend on the positioning 
of the patient.40 Therefore, to achieve clinically meaningful 
high accuracy, trans-hospital or hybrid data sets from mul-
tiple machines and conditions are likely to be needed due 
to the nature of dental images. For this reason, it is espe-
cially important to emphasize the need to construct a large-
scale dental public dataset to make the clinical application 
of deep learning possible.

It is also necessary to emphasize the need for data stan-
dardization in the dental field, as well as for standardization 
of data set construction. In particular, CBCT exhibits large 
image variation according to brand, machine, and exposure 
conditions, which can be an obstacle to deep learning re-

search. For example, collecting and learning data on a ma-
chine-by-machine basis is difficult because models learned 
on one machine do not apply to other machines. Although 
attempts have been made to develop guidelines in Europe, 
Germany, and England regarding the image quality of 
CBCT, no international standard has yet been established.41 
Therefore, in order for 3-dimensional diagnosis using deep 
learning to be practical, an international standard for the 
quality of CBCT images needs to be established in the near 
future.

Many papers have used preprocessed images via manual 
cropping of the region of interest. This makes it difficult 
to analyze and compare results accurately due to errors 
in the manual process. Some papers9,10,19 have described 
networks that learned by dividing images into patches of a 
certain size. However, this method is limited because the 
network cannot learn the whole image, and instead only fo-
cuses on a small part of the image. Some papers21,22,24 used 
downsampling, which might delete important details of 
the image. These choices seem to have been made due to 
limitations in the amount of data or computational power, 
as indicated in the limitations sections of some papers.21,22 
However, as computing power per cost increases, it is nec-
essary to use entire images to learn, without any artificial 
manipulation in the preprocessing stage, in order to obtain 
more accurate and general results.

Currently, the use of AI is expanding in the medical field. 
For example, Watson, developed by IBM, has been used to 
support doctors’ clinical decisions.42 However, the clinical 
accuracy of AI in the dental field must be verified with a 
variety of cases and imaging modalities due to the difficul-
ty of standardizing dental radiology before AI can take on 
a more important role in making diagnostic recommenda-
tions. Furthermore, current AI algorithms function as black 
boxes, making it difficult for humans to identify or adjust 
the criteria used for diagnoses.43 Therefore, in order to in-
crease the reliability of AI, it is necessary to develop a visu-
alization and modification tool for deep learning networks 
that can be easily understood and edited by humans.
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