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An overview of deep learning in the field of dentistry

Jae-Joon Hwang(®', Yun-Hoa Jung(®', Bong-Hae Cho(®', Min-Suk Heo(®?>*

'Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
*Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea

ABSTRACT

Purpose: Artificial intelligence (Al), represented by deep learning, can be used for real-life problems and is applied
across all sectors of society including medical and dental field. The purpose of this study is to review articles about
deep learning that were applied to the field of oral and maxillofacial radiology.

Materials and Methods: A systematic review was performed using Pubmed, Scopus, and IEEE explore databases to
identify articles using deep learning in English literature. The variables from 25 articles included network architecture,
number of training data, evaluation result, pros and cons, study object and imaging modality.

Results: Convolutional Neural network (CNN) was used as a main network component. The number of published
paper and training datasets tended to increase, dealing with various field of dentistry.

Conclusion: Dental public datasets need to be constructed and data standardization is necessary for clinical application
of deep learning in dental field. (Imaging Sci Dent 2019; 49: 1-7)
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Introduction

Artificial intelligence (AI) has evolved from the concept
of strong Al, which imitates human intelligence, to the im-
plementation of weak Al that can solve certain problems.'
Studies of weak Al explore ways to construct algorithms
that can learn from data and make predictions. Machine
learning is a branch of computer science that builds al-
gorithms guided by data.”> Among them, neural networks
(NNs), which consist of nodes and weights, were one of
the first types of Al algorithms to be developed. The com-
putational power of these networks relies on the quality
and quantity of training data, which allow these networks
to update the weights of the connections. Simple network
structures with only a few layers are known as “shallow”
learning neural networks, whereas network structures that
employ numerous and large layers are referred to as “deep”
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learning neural networks.’ Deep learning structures re-
ferred to as convolutional neural networks (CNNSs), which
can extract many features from abstracted layers of filters,
are mainly used for processing large and complex images.
Deep learning is being accelerated by the development of
self-learning back-propagation algorithms that progressive-
ly refine the results from the data, as well as by increases
in computational power. Due to these rapid technological
advances, Al, represented by deep learning, can be used for
real-life problems and is applied across all sectors of soci-
ety.* The diagnostic accuracy of deep learning algorithms
in the medical field is approaching levels of human exper-
tise, changing the role of computer-assisted diagnosis from
a ‘second-opinion’ tool to a more collaborative one.’ The
development of Al applications in the dental field is also
remarkable.'” In this article, papers about deep learning ap-
plied to the field of oral and maxillofacial radiology will be
reviewed.

Materials and Methods

Search strategy
In PubMed, Scopus, and the IEEE Xplore Digital Library,
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a search was performed for ‘deep learning OR neural net-
work’ and ‘dental AND (diagnosis OR detection OR clas-
sification OR segmentation)’ extending through December
2018, and 144, 33, and 32 search results were obtained, re-
spectively. A total of 25 peer-reviewed papers were obtained
by removing articles not written in English, those focusing
on non-dental fields, papers not related to imaging dentistry,
as well as reviews, editorials, and in-press papers. The mul-
tilayer perceptron emerged as an early field of deep learn-
ing, and papers on this topic were excluded from this study
because it is not a true end-to-end learning method — it
learns features extracted from images using existing ma-
chine learning algorithms—and it has shallow networks and
limited accuracy when the number of layers is increased.’

Data extraction

Study-specific data describing deep learning architecture,
the size of the training datasets, evaluation results, advan-
tages and disadvantages, the object of the study, and imag-
ing modality were collected, in addition to other variables
such as author and publication year.

Results

The data extracted from the selected papers are summa-
rized in Table 1.

In all studies, CNN was used as a main network compo-
nent, and there were also studies using various other types
of networks, such as long short-term memory and siamese
networks, in addition to CNNs. CNN-based papers have
appeared in the field of dentistry since 2016, and subse-
quently, more and more dentistry papers using CNN have
been published (Fig. 1).

The median size of the datasets used for training also
tended to increase, from 100 units to 1000 units (Fig. 2).

Many papers that used pretrained networks such as Alex-
net, VGG, GoogLeNet, and Inception v3 showed good re-
sults for general purposes.31 However, the structure of CNN
networks tends to change from networks with shallow lay-
ers to deeper or problem-specific home-made or complex
networks.

These studies dealt with various field of dentistry. Most
of them were related to teeth, but other subjects such as the
gingiva and periodontium, the dental arch, osteoporosis,
and anatomical landmarks were also studied using deep
learning (Table 2).

Various imaging modalities have been studied in con-
junction with the abovementioned subjects. Efforts are
underway to diagnose dental disease using traditional 2-di-

mensional radiographs (intraoral and panoramic), as well
as using 3-dimensional cone-beam computed tomography
(CBCT). Other studies have investigated new modalities
in dental applications, such as quantitative light-induced
fluorescence, optical coherence tomography, and the use of
intra-oral laser scanners.

Discussion

Computer assisted diagnosis (CAD) software in the med-
ical field has been used to obtain second opinions, but the
design and tuning of conventional CAD tends to be very
arduous. Recently, deep learning techniques have been in-
tegrated into CAD, with promising results for various med-
ical applications.”’33 The qualitative and quantitative ap-
plications of deep learning in dentistry are also expanding,
but certain areas need to be complemented to promote the
continued development of deep learning research in oral
and maxillofacial radiology.

However, because all the data sets used in the research
analyzed herein were in-house, objective comparison of
the studies was difficult. Only a single study tried to evalu-
ate the accuracy of developed networks using other public
datasets.” Efforts are needed to develop a public dataset,
such as in the medical field,™ to develop algorithms that
can be used in clinical applications. In order to achieve
this, researchers need to release the data used in their pa-
pers with appropriate removal of personal information, and
legal and institutional support from each country is also
necessary.35’36 There is also a need to build a common, free
repository that can reliably collect, catalog, and archive
publicly available data in the dental field.

The overall increase in the size of training datasets is
desirable for clinical applications of deep learning to the
dental field. However, most studies used relatively small
data sets (fewer than 1000 units per group), and the accu-
racy of most studies was less than 90%. This is below the
clinically expected accuracy of 98%-99%." Deep learning
requires a large amount of data because it learns features
directly from the data via an end-to-end process. In an an-
atomical classification study of CT data, at least 1,000 data
sets per group were required to achieve 98% validation
accuracy with deep learning, and 4,092 data sets per group
were required to reach the desired accuracy of 99.5%.”
CBCT, which is the most popular 3D imaging modality in
the dental field, does not utilize defined Hounsfield unit
values like medical CT, and the pixel values of the acquired
images change at every exposure.”’ The image quality and
magnification of panoramic radiographs, which are com-
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Fig. 2. Median size of training datasets from 2016 to 2018.

Table 2. Frequency of subjects in deep learning articles

Subject Frequency
Tooth related 12
Dental plaque 3
Gingiva or periodontium 2
Osteoporosis 2
etc. 5

monly used in dental practice, depend on the positioning
of the patient.* Therefore, to achieve clinically meaningful
high accuracy, trans-hospital or hybrid data sets from mul-
tiple machines and conditions are likely to be needed due
to the nature of dental images. For this reason, it is espe-
cially important to emphasize the need to construct a large-
scale dental public dataset to make the clinical application
of deep learning possible.

It is also necessary to emphasize the need for data stan-
dardization in the dental field, as well as for standardization
of data set construction. In particular, CBCT exhibits large
image variation according to brand, machine, and exposure
conditions, which can be an obstacle to deep learning re-

Jae-Joon Hwang et al

search. For example, collecting and learning data on a ma-
chine-by-machine basis is difficult because models learned
on one machine do not apply to other machines. Although
attempts have been made to develop guidelines in Europe,
Germany, and England regarding the image quality of
CBCT, no international standard has yet been established."'
Therefore, in order for 3-dimensional diagnosis using deep
learning to be practical, an international standard for the
quality of CBCT images needs to be established in the near
future.

Many papers have used preprocessed images via manual
cropping of the region of interest. This makes it difficult
to analyze and compare results accurately due to errors
in the manual process. Some papersg’m’19 have described
networks that learned by dividing images into patches of a
certain size. However, this method is limited because the
network cannot learn the whole image, and instead only fo-
cuses on a small part of the image. Some pape:rs21’22’24 used
downsampling, which might delete important details of
the image. These choices seem to have been made due to
limitations in the amount of data or computational power,
as indicated in the limitations sections of some papers 22
However, as computing power per cost increases, it is nec-
essary to use entire images to learn, without any artificial
manipulation in the preprocessing stage, in order to obtain
more accurate and general results.

Currently, the use of Al is expanding in the medical field.
For example, Watson, developed by IBM, has been used to
support doctors’ clinical decisions 2 However, the clinical
accuracy of Al in the dental field must be verified with a
variety of cases and imaging modalities due to the difficul-
ty of standardizing dental radiology before Al can take on
a more important role in making diagnostic recommenda-
tions. Furthermore, current Al algorithms function as black
boxes, making it difficult for humans to identify or adjust
the criteria used for diagnoses.43 Therefore, in order to in-
crease the reliability of Al, it is necessary to develop a visu-
alization and modification tool for deep learning networks
that can be easily understood and edited by humans.
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