DOI QR코드

DOI QR Code

HOM-LIE-YAMAGUTI SUPERALGEBRAS

  • Gaparayi, Donatien (Ecole Normale Superieure (E.N.S)) ;
  • Attan, Sylvain (Departement de Mathematiques Universite d'Abomey-Calavi) ;
  • Issa, A. Nourou (Departement de Mathematiques Universite d'Abomey-Calavi)
  • Received : 2018.07.02
  • Accepted : 2019.03.18
  • Published : 2019.03.30

Abstract

(Multiplicative) Hom-Lie-Yamaguti superalgebras are defined as a ${\mathbb{Z}}_2$-graded generalization of Hom-Lie Yamaguti algebras and also as a twisted generalization of Lie-Yamaguti superalgebras. Hom-Lie-Yamaguti superalgebras generalize also Hom-Lie supertriple systems (and subsequently ternary multiplicative Hom-Nambu superalgebras) and Hom-Lie superalgebras in the same way as Lie-Yamaguti superalgebras generalize Lie supertriple systems and Lie superalgebras. Hom-Lie-Yamaguti superalgebras are obtained from Lie-Yamaguti superalgebras by twisting along superalgebra even endomorphisms. We show that the category of (multiplicative) Hom-Lie-Yamaguti superalgebras is closed under twisting by self-morphisms. Constructions of some examples of Hom-Lie-Yamaguti superalgebras are given. The notion of an nth derived (binary) Hom-superalgebras is extended to the one of an nth derived binary-ternary Hom-superalgebras and it is shown that the category of Hom-Lie-Yamaguti superalgebras is closed under the process of taking nth derived Hom-superalgebras.

Keywords

References

  1. K. Abdaoui, F. Ammar and A. Makhlouf, Hom-Lie Superalgebras and Hom-Lie admissible Superalgebras, Journal of algebra. 324 (7) (2010), 1513-1528. https://doi.org/10.1016/j.jalgebra.2010.06.014
  2. K. Abdaoui, F. Ammar and A. Makhlouf, Hom-alternative, Hom-Malcev and Hom-Jordan Superalgebras, arXiv: 1304.1579v1 [math.RA] Apr 2013.
  3. H. Albuquerque and A. Elduque, Classification of Mal'tsev Superalgebras of small dimensions, Algebra and Logic 35 (6) (1996), 512-554.
  4. H. Ataguema, A. Makhlouf and S.D. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (2009), 083501. https://doi.org/10.1063/1.3167801
  5. S. Attan and A. Nourou Issa, Hom-Bol algebras, Quasigroups and related Systems 21 (2013), 131-146.
  6. Y. Fregier and A. Gohr, Unital algebras of Hom-associative type and surjective or injective twistings, J. of Gen. Lie Theo. and Appl. 3 (4) (2009), 285-295. https://doi.org/10.4303/jglta/S090402
  7. D. Gaparayi and A. N. Issa, A twisted generalization of Lie-Yamaguti algebras, Int. J. Algebra. 6 (7) (2012), 339-352.
  8. D. Gaparayi and A. N. Issa, Hom-Akivis superalgebras, Journal of Algebra and Computational Applications. 6 (1) (2017), 36-51.
  9. J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using ${\sigma}$-derivations, J. Algebras 292 (2006), 314-361.
  10. A. N. Issa, Hom-Akivis algebras, Comment. Math. Univ. Carolin. 52 (4) (2011), 485-500.
  11. A. N. Issa, Supercommutator algebras of right (Hom)-alternative superalgebras, arXiv:1710.02706v1[math.RA]
  12. A. Koulibaly and M.F. Ouedraogo, Supersystemes Triples de Lie associes aux superalgebres de Malcev, Africa Matematika 14 (3) (2002).
  13. D. Larsson and S. D. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-cycle-like identies, J. Algebra. 288 (2005), 321-344. https://doi.org/10.1016/j.jalgebra.2005.02.032
  14. D. Larsson and S. D. Silvestrov, Quasi-Lie algebras, Comptemp.Math. 391 (2005).
  15. A. Makhlouf, Hom-Alternative algebras and Hom-Jordan algebras, Int. Elect. J. Alg. 8 (2010), 177-190.
  16. A. Makhlouf and Silvestrov S.D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64. https://doi.org/10.4303/jglta/S070206
  17. S. Okubo, Jordan-Lie Super Algebra and Jordan-Lie Triple System, Journal of algebra 198 (1997), 388-411. https://doi.org/10.1006/jabr.1997.7144
  18. D. Yau, Hom-algebras and homology, J. Lie Theory. 19 (2009), 409-421.
  19. D. Yau, Hom-Novikov algebras, J. Phys. A 44 (2011), 085202. https://doi.org/10.1088/1751-8113/44/8/085202
  20. D. Yau, Hom-Maltsev, Hom-alternative and Hom-Jordan algebras, Int. Elect. J. Alg. 11 (2012), 177-217.
  21. D. Yau , On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012), 506-522. https://doi.org/10.1016/j.geomphys.2011.11.006
  22. T. Zhang and J. Li, Representations and cohomologies of Hom-Lie-Yamaguti algebras with applications, Colloquium Mathematicum 148 (2) (2017), 131-155. https://doi.org/10.4064/cm6903-6-2016

Cited by

  1. Representations and Deformations of Hom-Lie-Yamaguti Superalgebras vol.2020, 2019, https://doi.org/10.1155/2020/9876738