DOI QR코드

DOI QR Code

ON CORSINI HYPERGROUPS AND THEIR PRODUCTIONAL HYPERGROUPS

  • Al Tahan, M. (Department of Mathematics Lebanese International University) ;
  • Davvaz, B. (Department of Mathematics Yazd University)
  • Received : 2018.08.31
  • Accepted : 2019.02.04
  • Published : 2019.03.30

Abstract

In this paper, we consider a special hypergroup defined by Corsini and we name it Corsini hypergroup. First, we investigate some of its properties and find a necessary and sufficient condition for the productional hypergroup of Corsini hypergroups to be a Corsini hypergroup. Next, we study its regular relations, fundamental group and complete parts. Finally, we characterize all Corsini hypergroups of orders two and three up to isomorphism.

Keywords

References

  1. M. Al- Tahan and B. Davvaz, On a special single-power cyclic hypergroup and its automorphisms, Discrete Mathematics, Algorithms and Applications 7 (4) (2016), 12 pages.
  2. M. Al- Tahan and B. Davvaz, On some properties of single power cyclic hyper-groups and regular relations, J. Algebra Appl. 16 (11) (2017), 14 pages.
  3. R. Ameri, M. Amiri-Bideshki, A.B. Saeid and S. Hoskova-Mayerova, Prime filters of hyperlattices, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24(2) (2016), 15-26.
  4. R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 25(1) (2017), 5-23.
  5. P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani Editore, Italy, 1993.
  6. P. Corsini, Hypergraphs and hypergroups, Algebra Universalis 35 (4) (1996), 548-555. https://doi.org/10.1007/BF01243594
  7. P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Advances in Mathematics, Kluwer Academic Publisher, 2003.
  8. B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. viii+200 pp.
  9. B. Davvaz, Semihypergroup Theory, Elsevier, 2016.
  10. B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
  11. M. De Salvo and D. Freni, Cyclic semihypergroups and hypergroups, (Italian) Atti Sem. Mat. Fis. Univ. Modena 30 (1) (1981), 44-59.
  12. D. Freni, A note on the core of a hypergroup and the transitive closure ${\beta}^{\ast}$ of ${\beta}$, Riv. Mat. Pura Appl., 8 (1991), 153-156.
  13. S. Hoskova-Mayerova and A. Maturo, Algebraic hyperstructures and social relations, Ital. J. Pure Appl. Math. 39 (2018), 701-709.
  14. M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl. 49 (1970), 155-192.
  15. V. Leoreanu, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math. 7 (2000), 69-76.
  16. F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves, (1934), 45-49.
  17. J. Mittas, Hypergroups canoniques, Math. Balkanica 2 (1972), 165-179.
  18. S.Sh. Mousavi, V. Leoreanu-Fotea and M. Jafarpour, Cyclic groups obtained as quotient hypergroups, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 61 (1) (2015), 109-122.
  19. T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor. Hadronic Press, Palm Harbor, USA, 1994.
  20. T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carolin. Math. Phys. 22 (1) (1981), 3-6.

Cited by

  1. Applications of (Neutro/Anti)sophications to Semihypergroups vol.2021, 2021, https://doi.org/10.1155/2021/6649349
  2. The Reducibility Concept in General Hyperrings vol.9, pp.17, 2021, https://doi.org/10.3390/math9172037