DOI QR코드

DOI QR Code

Screening Methods for Anti-senescence Activity in Dermal Fibroblasts under Pyruvate-deprivation Conditions

  • 투고 : 2019.11.04
  • 심사 : 2019.12.14
  • 발행 : 2019.12.30

초록

The identification of compounds with anti-senescence activity in cell culture system is a first step in aging research. Given that pyruvate can be used energy source by conversion to acetyl-CoA in mitochondria, and protects cultured cell from various stress-induced cell damage and cell death, synthetic media (e.g., DMEM) often includes 1 mM pyruvate, which is very higher than the pyruvate concentration in human blood (approximately 30 ��M). However, the use of medium containing high concentration of pyruvate is not suitable for screening anti-senescence compounds, because pyruvate also protects against the cellular senescence of primary human dermal fibroblasts (NHDFs) through NAD+ generated during conversion to lactate. In this study, four extracts, i.e., Sprouted seed and fruit complex, Poncirus trifoliata fruit extract, Jaum balancing complex, and Prunus mume extract were used for evaluation of different anti-senescence effect in the absence or presence of 0.1 mM pyruvate, similar to the physiological pyruvate concentration. The senescence in NHDFs cultured with DMEM in the presence of 0.1 mM pyruvate (approximately the physiological concentration in human blood) is accelerated, as observed in pyruvate deprivation conditions. The cytotoxicity of the Poncirus trifoliata fruit extract was protected by pyruvate, and Jaum balancing complex and Prunus mume extract had anti-senescence activity in the presence of 0.1 mM pyruvate, but not in the absence of pyruvate. Given that pyruvate is a powerful protector against both cytotoxicity and cellular senescence, the screening of candidate agents for anti-senescence in high pyruvate conditions using an in vitro cell culture system is not valid. Therefore, we recommend the use of a low concentration of pyruvate to evaluate the anti-senescence effects of candidates, which is more similar to in vivo aging conditions than excessive stress-induced senescence models, to exclude the effect of excessive pyruvate in vitro.

키워드

참고문헌

  1. C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, The hallmarks of aging, Cell, 153(6), 1194 (2013). https://doi.org/10.1016/j.cell.2013.05.039
  2. S. Imai, L. Guarente, NAD+ and sirtuins in aging and disease, Trends Cell Biol., 24(8), 464 (2014). https://doi.org/10.1016/j.tcb.2014.04.002
  3. K. F. Mills, S. Yoshida, L. R. Stein, A. Grozio, S. Kubota, Y. Sasaki, P. Redpath, M. E. Migaud, R. S. Apte, K. Uchida, J. Yoshino, and S. I. Imai, Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice, Cell Metab, 24(6), 795 (2016). https://doi.org/10.1016/j.cmet.2016.09.013
  4. H. T. Kang, J. T. Park, K. Choi, Y. Kim, H. J. C. Choi, C. W. Jung, Y. S. Lee, and S. Chul Park, Chemical screening identifies ATM as a target for alleviating senescence, Nat. Chem. Biol., 13(6), 616 (2017). https://doi.org/10.1038/nchembio.2342
  5. T. Kuilman, C. Michaloglou, W. J. Mooi, and D. S. Peeper, The essence of senescence, Genes Dev., 24(22), 2463 (2010). https://doi.org/10.1101/gad.1971610
  6. Q. Chen, B.N. Ames, Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells, Proc. Natl. Acad. Sci. U. S. A., 91(10), 4130 (1994). https://doi.org/10.1073/pnas.91.10.4130
  7. M. Serrano, A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe, Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell, 88(5), 593 (1997). https://doi.org/10.1016/S0092-8674(00)81902-9
  8. O. Toussaint, E. E. Medrano, and T. von Zglinicki, Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes, Exp. Gerontol., 35(8), 927 (2000). https://doi.org/10.1016/S0531-5565(00)00180-7
  9. A. Di Leonardo, S. P. Linke, K. Clarkin, and G. M. Wahl, DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts, Genes Dev., 8(21), 2540 (1994). https://doi.org/10.1101/gad.8.21.2540
  10. C. D. Wiley, M. C. Velarde, P. Lecot, S. Liu, E. A. Sarnoski, A. Freund, K. Shirakawa, H. W. Lim, S. S. Davis, A. Ramanathan, A. A. Gerencser, E. Verdin, and J. Campisi, Mitochondrial dysfunction induces senescence with a distinct secretory phenotype, Cell Metab., 23(2), 303 (2016). https://doi.org/10.1016/j.cmet.2015.11.011
  11. J. Y. Kim, S. H. Lee, I. H. Bae, D. W. Shin, D. Min, M. Ham, K. H. Kim, T. R. Lee, H. J. Kim, E. D. Son, A. Y. Lee, Y. W. Song, and I. S. Kil, Pyruvate protects against cellular senescence through the control of mitochondrial and lysosomal function in dermal fibroblasts, J. Invest. Dermatol., 138(12), 2522 (2018). https://doi.org/10.1016/j.jid.2018.05.033
  12. A. Bonen, M. Heynen, and H. Hatta, Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle, Appl Physiol Nutr Metab, 31(1), 31 (2006). https://doi.org/10.1139/h05-002
  13. K. Birsoy, T. Wang, W. W. Chen, E. Freinkman, M. Abu-Remaileh, and D. M. Sabatini, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162(3), 540 (2015). https://doi.org/10.1016/j.cell.2015.07.016
  14. S. Cardaci, L. Zheng, G. MacKay, N.J. van den Broek, E. D. MacKenzie, C. Nixon, D. Stevenson, S. Tumanov, V. Bulusu, J. J. Kamphorst, A. Vazquez, S. Fleming, F. Schiavi, G. Kalna, K. Blyth, D. Strathdee, and E. Gottlieb, Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis, Nat. Cell. Biol., 17(10), 1317(2015). https://doi.org/10.1038/ncb3233
  15. L. B. Sullivan, D. Y. Gui, A. M. Hosios, L. N. Bush, E. Freinkman, and M. G. Vander Heiden, Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells, Cell, 162(3), 552 (2015). https://doi.org/10.1016/j.cell.2015.07.017
  16. M. Harris, Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol, Somatic Cell Genet., 6(6), 699 (1980). https://doi.org/10.1007/BF01538969
  17. S. Desagher, J. Glowinski, and J. Premont, Pyruvate protects neurons against hydrogen peroxide-induced toxicity, J. Neurosci., 17(23), 9060 (1997). https://doi.org/10.1523/jneurosci.17-23-09060.1997
  18. J. R. Cantor, M. Abu-Remaileh, N. Kanarek, E. Freinkman, X. Gao, A. Louissaint, C. A. Lewis, and D. M. Sabatini, Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase, Cell, 169(2), 258 (2017). https://doi.org/10.1016/j.cell.2017.03.023
  19. J. S. Ko, J .C. Lee, Y. M. Jang, Y. J. Mun, W. H. Woo, K. S. Lim, and Y. C. Lee, Inhibitory effect on melanogenesis of Ponciri fructus ethanol extract, Korean J. Oriental Physiology & Pathology, 22(4), 829 (2008).