References
- D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, "Mastering the game of go with deep neural networks and tree search," Nature, vol. 529, no. 7587, pp. 484-489, January, 2016. https://doi.org/10.1038/nature16961
- D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den Driessche, T. Graepel, and D. Hassabis, "Mastering the game of go without human knowledge," Nature, vol. 550, no. 7676, pp. 354-359, October, 2017. https://doi.org/10.1038/nature24270
- K. Lee, S.-A. Kim, J. Choi, S.-W. Lee, "Deep reinforcement learning in continuous action spaces: a case study in the game of simulated curling," 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, pp. 2937-2946, 2018.
- K. Arulkumaran, M.P. Deisenroth, M. Brundage, and A.A. Bharath, "Deep reinforcement learning: A brief survey," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, November, 2017. https://doi.org/10.1109/MSP.2017.2743240
- J. Kober and J. Peters, "Reinforcement learning in robotics: A survey," Learning Motor Skills, Springer, 2014, ch. 2, pp. 9-67.
- V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, February, 2015. https://doi.org/10.1038/nature14236
- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," arXiv:1509.02971 [cs.LG], 2015.
- S. Levine and V. Koltun, "Guided policy search," 30th International Conference on Machine Learning (ICML), Atlanta, Georgia, USA, pp. 1-9, 2013.
- C. Finn, Guided policy search, [Online], https://github.com/cbfinn/gps, Accessed: January 14, 2019.
- P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, "Deep reinforcement learning that matters," arXiv:1709.06560 [cs.LG], 2017.
- C. Finn, X.Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, "Deep spatial autoencoders for visuomotor learning," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, pp. 512-519, 2016.
- Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, "Deep dynamic policy programming for robot control with raw images," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, pp. 1545-1550, 2017.
- Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine, "Combining model-based and model-free updates for trajectory-centric reinforcement learning," 34th International Conference on Machine Learning (ICML), Sydney, Australia, pp. 703-711, 2017.
- S. Levine, C. Finn, T. Darrell, and P. Abbeel, "End-to-end training of deep visuomotor policies," Journal of Machine Learning Research (JMLR), vol. 17, no. 39, pp. 1-40, January, 2016.
- H. Wang and A. Banerjee, "Bregman alternating direction method of multipliers," Advances in Neural Information Processing Systems (NIPS), Montreal, Canada, pp. 2816-2824, 2014.
- W. Montgomery and S. Levine, "Guided policy search via approximate mirror descent," Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, pp. 4008-4016, 2016.
Cited by
- The DIAMOND Model: Deep Recurrent Neural Networks for Self-Organizing Robot Control vol.14, 2019, https://doi.org/10.3389/fnbot.2020.00062