DOI QR코드

DOI QR Code

The Effect of a Design Thinking-based Maker Education Program on the Creative Problem Solving Ability of Elementary School Students

디자인 사고 기반 메이커 교육 프로그램이 초등학생의 창의적 문제해결력에 미치는 영향

  • Lee, Seungchul (Dept. of Computer Education, Korea National University of Education) ;
  • Kim, Taeyoung (Dept. of Computer Education, Korea National University of Education) ;
  • Kim, Jinsoo (Dept. of Technology Education, Korea National University of Education) ;
  • Kang, Seongjoo (Dept. of Chemistry Education, Korea National University of Education) ;
  • Yoon, Jihyun (Graduate School of Education, Dankook University)
  • 이승철 (한국교원대학교 컴퓨터교육과) ;
  • 김태영 (한국교원대학교 컴퓨터교육과) ;
  • 김진수 (한국교원대학교 기술교육과) ;
  • 강성주 (한국교원대학교 화학교육과) ;
  • 윤지현 (단국대학교 교육대학원)
  • Received : 2019.02.14
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

Maker movement is emerging as one of the key areas of the fourth industrial revolution in recent years. The maker movement is to create and share what users need using a variety of inexpensive production tools such as open source software and hardware, 3D printers and laser cutters. We think that the effect would be enhanced if design thinking is applied to elementary and middle school (K-12) class. The purpose of this study is to develop a design thinking-based maker education program and to apply it to classroom for clarify the effect on the creative problem solving ability of elementary school students. In order to verify the purpose of the research, students in the 5th-6th grades of elementary school were divided into a controlled group and an experimental group. The general lecture maker class was applied in the controlled group, and our developed design thinking-based maker class was simultaneously applied in the experimental group. The creative problem solving ability test was conducted before and after the test, and its effectiveness was verified using statistical t-test. In conclusion, this study suggests that design thinking-based maker education program has a positive effect on elementary school students' creative problem solving ability.

최근 4차 산업혁명의 핵심 영역 중 하나로 메이커 운동(maker movement)이 떠오르고 있다. 메이커 운동은 오픈소스 소프트웨어 및 하드웨어, 3D 프린터, 레이저 커팅기 등 다양하고 저렴한 제작 도구를 이용하여 사용자가 필요한 물건을 직접 제작하고 공유하는 것이다. 메이커 교육을 초 중등(K-12) 수업에 적용할 때 디자인 사고를 기반으로 한다면 그 효과가 증진될 것으로 생각한다. 본 연구의 목적은 디자인 사고 기반 메이커 교육 프로그램을 개발하고 수업에 적용하여 초등학생의 창의적 문제해결력에 미치는 영향을 밝히는 것이다. 연구 내용을 검증하기 위해 초등학교 5~6학년 학생을 통제집단과 실험집단으로 나누고 통제집단에는 일반적인 강의식 메이커 수업을 적용하였고, 실험집단에는 개발된 디자인 사고 기반의 메이커 수업을 적용하였다. 창의적 문제해결력 검사를 사전, 사후 실시하였고, 통계적 t-검정을 이용하여 그 효과성을 검증하였다. 결론적으로 본 연구를 통해 디자인 사고 기반 메이커 교육 프로그램은 초등학생의 창의적 문제해결력에 긍정적인 영향이 있음을 밝혔다.

Keywords

References

  1. Anderson, C. (2012). Makers: The New Industrial Revolution. Crown Business.
  2. Blikstein, P. (2013). Digital Fabrication and 'Making'in Education: The Democratization of Invention. FabLabs: Of Machines, Makers and Inventors, 4.
  3. Brown, T. (2008). Design thinking. Harvard Business Review, June. 2008. Harvard Business School Publishing Corporation.
  4. Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A. & Hornstein, M.(2010). Destination, Imagination, and the Fires Within: Design Thinking in a Middle School Classroom. International Journal of Art & Design Education, 29(1), 37-53. https://doi.org/10.1111/j.1476-8070.2010.01632.x
  5. Cho. S., Jang. Y., Jung. T. & Lim. H. (2000). A Study on the Development of Simple and Creative Problem-Solving Test (1). Seoul: Korea Educational Development Institute.
  6. Cho. S. & Nah. K. (2012). A Study on the Social Role of Creativity and Innovation in Design. Journal of the Korean Society of Design Culture, 8(1), 433-447.
  7. Fried, B. & Wetstone, K. (2014). President Obama at the White House Maker Fair: "Today's DIY is tomorrow's 'made in America'" [White House blog post].
  8. Hwang. S. (2015). Effect of Programming Education using App Inventor on Informatics Gifted Elementary Students' Creative Problem Solving Ability and Learning Flow. A Study on the Master's Degree in Graduate School of Korea National University of Education.
  9. IDEO (2012). Design Thinking for Educators.
  10. Kim. Y. (2015). A Study on Effect of the Characteristics of Design Thinking on the Performance of Entrepreneurial Firm. A Study on the Master's Degree in Graduate School of Industry & Entrepreneurial Management, Chung-Ang University.
  11. Lee. D. (2015). Exploration of Core Competence and Development of Process for the Introduction of Design Thinking to Science Education as a Method for Group Creativity Education. A Study on the Doctor's Degree in Graduate School of Korea National University of Education.
  12. Lee. D., Yoon. J. & Kang. S. (2015). The Suggestion of Design Thinking Process and its Feasibility Study for Fostering Group Creativity of Elementary-Secondary School Students in Science Education. Journal of the Korean Association for Science Education, 35(3), 443-453. https://doi.org/10.14697/jkase.2015.35.3.0443
  13. Lee. J. (2015). A Study of Design Thinking Adaptation to Computer Education Based on Computational Thinking-Focused on Computer Education for Elementary School, Journal of the Korean Society of Design Culture, 21(1), 455-467.
  14. Lee. J. (2017). A Study of Design Thinking Adaptation for Maker Education Process, Journal of Korea Design Forum, 54, 225-234.
  15. Lee. S. (2018). The Effect of a Design Thinking-based Maker Education Program on Elementary School Students' Creative Problem Solving Ability and Learning Motivation. A Study on the Master's Degree in Graduate School of Korea National University of Education.
  16. Maker Education Initiative. (2014). The Maker Education Initiative's Mission. [2014-06-30]. https://makered.org/about/.
  17. Martinez, S. L. & Stager, G. (2013). Invent to Learn: Making, Tinkering, and Engineering in the Classroom. Constructing Modern Knowledge Press.
  18. Ministry of Education, Korea (2015). The National Guidelines for the Elementary and Secondary Curriculum. #2015-74 [Annex 1].
  19. Ministry of Education, Korea (2015). The Practical Arts (Technology/Home Economics) and Informatics Curriculum. #2015-74 [Annex 10].
  20. Ministry of Education, Korea (2015). The Creative Experiential Activities (including Safe Life) Curriculum. #2015-74 [Annex 42].
  21. Ministry of Science, ICT and Future Planning. (2016). Makers Revitalization Plan.
  22. Song. K. & Kim. S. (2015) Integrate the Education of the Maker Revolution, Seoul: Hongrung publishing company.
  23. Stanford D.School (2010). Bootcamp Bootleg. https://dschool.stanford.edu/resources/the-bootcamp-bootleg

Cited by

  1. 기술 교육 기반의 생체 모방 로봇 교육 프로그램 개발 및 적용 효과 vol.9, pp.4, 2019, https://doi.org/10.22156/cs4smb.2019.9.4.109
  2. 고등학교 가정과 메이커 교육 프로그램 개발과 평가: '한복과 창의적인 의생활' 내용 요소를 중심으로 vol.31, pp.4, 2019, https://doi.org/10.19031/jkheea.2019.12.31.4.63
  3. 디자인씽킹을 적용한 가정과 교수·학습자료 개발 및 학습 경험 분석: 지속가능한 소비 단원을 중심으로 vol.32, pp.1, 2019, https://doi.org/10.19031/jkheea.2020.03.32.1.145
  4. 디자인씽킹 기반 고등학교 화학 수업의 효과 연구 vol.64, pp.3, 2020, https://doi.org/10.5012/jkcs.2020.64.3.159
  5. 디자인씽킹 프로세스 기반의 인공지능(AI) 교육 프로그램 적용 효과분석 vol.23, pp.4, 2019, https://doi.org/10.32431/kace.2020.23.4.005
  6. 고등학생 대상 메이커 교육이 소프트웨어 교육에 대한 태도, 창의적 문제해결력, 컴퓨팅 사고에 미치는 영향 vol.24, pp.6, 2019, https://doi.org/10.14352/jkaie.2020.24.6.585
  7. 학교내 무한상상실을 활용한 메이커교육 프로그램 적용이 초등학생의 창의적 문제해결력과 자기주도적 학습력에 미치는 효과 vol.40, pp.1, 2019, https://doi.org/10.15267/keses.2021.40.1.55
  8. 블렌디드 러닝을 통한 HTE 창의교육 프로그램이 중학생의 창의적 문제해결력에 미치는 영향 vol.21, pp.7, 2019, https://doi.org/10.5392/jkca.2021.21.07.488