DOI QR코드

DOI QR Code

Design and Implementation of Triple-band WLAN Antenna with Microstrip Lines

마이크로스트립 선로를 이용한 삼중대역 WLAN 안테나의 설계 및 제작

  • Yoon, Joong-Han (Division of Smart Electrical and Electronic Engineering, Silla University)
  • 윤중한 (신라대학교 스마트전기전자공학부)
  • Received : 2018.09.28
  • Accepted : 2019.02.15
  • Published : 2019.02.28

Abstract

In this paper, a microstrip-fed triple-band antenna for WLAN system with microstrip lines was designed, fabricated and measured. The proposed antenna is composed of two strip lines and slit in the ground plane and then designed in order to get triple band characteristics. We carried out simulation on $L_3$, $L_{10}$, and slit parameters, and adjusted the parameters of the proposed antenna to satisfy the required frequency band and bandwidth. The proposed antenna is made of $32.0{\times}44.0{\times}1.0mm$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shows that the proposed antenna obtained the -10 dB impedance bandwidth 120 MHz (890 MHz~1.01 MHz), 440 MHz (2.35~2.79 GHz), and 1,280 MHz (5.07~6.35 GHz) covering the triple WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required frequency band, respectively.

본 논문에서는 마이크로스트립 선로를 이용하여 WLAN 시스템에 적용 가능한 삼중대역 안테나를 설계, 제작 및 측정하였다. 제안된 안테나는 두 개의 선로와 접지면에 슬릿을 갖도록 설계하여 삼중대역 특성을 갖도록 하였다. $L_3$, $L_{10}$, 그리고 슬릿 파라미터에 대한 조정을 위해 시뮬레이션을 수행하였으며 요구되는 주파수 대역과 대역폭을 만족하도록 제안된 모델의 각 파라미터 값들을 조정하였다. 제안된 안테나는 $32.0mm{\times}44.0mm{\times}1.0mm$의 크기로 유전율 4.4인 FR-4 기판 위에 설계 및 제작되었다. 제작 및 측정결과로부터, 120 MHz (890 MHz ~1.01 MHz), 440 MHz (2.35~2.79 GHz), 그리고 1,280 MHz (5.07~6.35 GHz)의 대역폭을 얻었다. 또한 요구되는 주파수 대역에서 측정된 이득과 방사패턴 특성을 나타내었다.

Keywords

KCTSAD_2019_v14n1_33_f0001.png 이미지

그림 1. 제안된 이중 대역 안테나의 구조 Fig. 1 Geometry of the proposed dual-band antenna

KCTSAD_2019_v14n1_33_f0002.png 이미지

그림 2. 선로 1과 접지면 사이의 갭 길이 영향에 의한 시뮬레이션 반사손실 특성 Fig. 2 Characteristics of simulation return loss due to gap between strip 1 and ground plane.

KCTSAD_2019_v14n1_33_f0003.png 이미지

그림 3. L3 영향에 의한 시뮬레이션 반사손실 특성 Fig. 3 Characteristics of simulation return loss due to effect of L3.

KCTSAD_2019_v14n1_33_f0004.png 이미지

그림 4. 선로 2의 영향에 의한 시뮬레이션 반사손실 특성 Fig. 4 Characteristics of simulation return loss due to effect of strip 2.

KCTSAD_2019_v14n1_33_f0005.png 이미지

그림 5. 슬릿 영향에 의한 시뮬레이션 반사손실 특성 Fig. 5 Characteristics of simulation return loss due to effect of slit.

KCTSAD_2019_v14n1_33_f0006.png 이미지

그림 6. 제안된 안테나의 프로토 타입 (a)앞면 그리고 (b) 뒷면 Fig. 6 Prototype of the proposed antenna: (a) front view and (b) back view

KCTSAD_2019_v14n1_33_f0007.png 이미지

그림 7. 제안된 안테나의 전류 분포 Fig. 7 The current distribution of the proposed antenna: (a) 938.7 MHz; (b) 2.46 GHz; (c) 5.29 GHz.

KCTSAD_2019_v14n1_33_f0008.png 이미지

그림 8. 제안된 안테나의 측정된 반사손실 결과 Fig. 8 The measured return loss results of the proposed antenna

KCTSAD_2019_v14n1_33_f0009.png 이미지

그림 9. 910 MHz에서 측정된 3-D 방사패턴 Fig. 9 Measured 3-D radiation pattern in 910 MHz

KCTSAD_2019_v14n1_33_f0010.png 이미지

그림 10. 2.44 GHz에서 측정된 3-D 방사패턴 Fig. 10 Measured 3-D radiation pattern in 2.44 GHz

KCTSAD_2019_v14n1_33_f0011.png 이미지

그림 11. 5.35 GHz에서 측정된 3-D 방사패턴 Fig. 11 Measured 3-D radiation pattern in 5.35 GHz

KCTSAD_2019_v14n1_33_f0012.png 이미지

그림 12. 5.75 GHz에서 측정된 3-D 방사패턴 Fig. 12 Measured 3-D radiation pattern in 5.75 GHz

KCTSAD_2019_v14n1_33_f0013.png 이미지

그림 13. 제안된 안테나의 측정된 최대 그리고 평균 이득 Fig. 13 Measured peak and average gains of the proposed antenna

표 1. 설계된 안테나의 파라미터들 Table 1. parameters of the designed antenna

KCTSAD_2019_v14n1_33_t0001.png 이미지

References

  1. B. Jeong, S. Jang, S. Yoon, and D. Kim, "Development direction of WLAN technology trends to IEEE 802.11ax standardization," Electronics and Telecommunications Trends, vol. 27, no. 2, 2012, pp. 1-10.
  2. J. Son, U. An, J. Ko, and K. Kwak, "Recent trend to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, 2016, pp. 3-9.
  3. Y. Park, "Characteristics of patch antenna for WLAN," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, 2011, pp. 803-808. https://doi.org/10.13067/JKIECS.2011.6.6.803
  4. O. Kim, "Design of dual band microstrip antenna for wireless communication applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1275-1279. https://doi.org/10.13067/JKIECS.2012.7.6.1275
  5. T. Choi, B. Bum, and S. Lim, "Modified Monopole Antenna for Multi resonance Wideband," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, 2008, pp. 53-57.
  6. S. Wee, N. Kim, and S. Lee, "Design and Fabrication of the Antenna for Wibro and WLAN Communications Using CPWG Structure," J. of Electromagnetic Engineering And Science, vol. 19, no. 10, 2008, pp. 1086-1095.
  7. Y. Seo, J. Jung, H. Lee, and Y. Lim, "Design of circualr monopole antenna with symmetrically folded stub for WLAN operation," Microwave and Optical Technology Letters, vol. 54, no. 7, 2012, pp. 1549-1552. https://doi.org/10.1002/mop.26845
  8. J. Yoon, Y. Rhee, and Y. Jang, "A study on the rectangular ring open-ended monopole antenna with a vertical strip for WLAN dual band operations," Microwave and Optical Technology Letters, vol. 55, no. 3, 2013, pp. 619-624. https://doi.org/10.1002/mop.27348
  9. Y. Koo and D. Im, "Design and Manufacture of Modified Ring antenna with Stub and Ground Slot for WLAN Applications," J. of Information and Communication Convergence Engineering, vol. 17, no. 10, 2013, pp. 2285-2272.
  10. C. Bark, M. Dim, and H. Sung, "Design of Compact Microstrip Patch Antenna for WLAN of IEEE 802.11a," J. of Korea Information Science, vol. 19, no. 2, 2013, pp. 611-617.
  11. J. Yoon, "Design and Manufacture of CPW-fed two arc-shaped antenna for WLAN applications," J. of the Korea Institute of Information and Communication Engineering, vol. 19, no. 4, 2015, pp. 765-771. https://doi.org/10.6109/jkiice.2015.19.4.765
  12. W. Yeo, K. Lai, K. Yeap, P. Teh, and H. Nisar, "A compact dual band hook shaped antenna for wireless application," Microwave and Optical Technology Letters, vol. 59, no. 5, 2017, pp. 1882-1887. https://doi.org/10.1002/mop.30651
  13. J. Yoon, "A design and implementation of dual band monopole antenna with two arc-shaped line for WLAN application," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1049-1056. https://doi.org/10.13067/JKIECS.2017.12.6.1049
  14. S. Park and J. Jung, "WLAN dual band dipole antenna with parasitic elements and reflector for high gain operation," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, 2018, pp. 341-348. https://doi.org/10.13067/JKIECS.2018.13.2.341