DOI QR코드

DOI QR Code

페리다이나믹 소성 모델을 통한 화강암의 고속 충돌 파괴 해석

Dynamic Fracture Analysis of High-speed Impact on Granite with Peridynamic Plasticity

  • 하윤도 (군산대학교 조선해양공학과)
  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.)
  • 투고 : 2018.10.24
  • 심사 : 2018.11.20
  • 발행 : 2019.02.28

초록

결합 기반 페리다이나믹 모델은 간단한 재료 모델을 통해 취성 재료의 다양한 동적 파괴 특성을 확인할 수 있었지만, 다양한 재료 구성 모델을 표현하는데 많은 한계점이 나타났다. 특히, 절점 간 결합이 서로 독립적으로 작용하여 포아송 비가 고정되고 전단 변형이 표현되는 않는 문제점이 있다. 상태 기반 페리다이나믹 모델은 보다 일반화되고 엄밀한 재료 모델링이 가능하며, 모든 결합의 변형 정보를 통해 각 절점의 거동이 계산되기 때문에 결합 기반 모델에서 표현하지 못한 전단 변형까지도 표현 가능하다. 본 연구에서는 상태 기반 페리다이나믹 모델을 통해 재료 모델을 구성하고, 소성 흐름 법칙으로부터 재료의 완전 소성 거동을 표현할 수 있도록 간단한 재료 모델을 구성한다. 평판 수치 예제를 통해 구성된 완전 소성 재료 모델을 검증하고 응력 변형 곡선을 확인한다. 또한 비국부 접촉 모델링을 통해 서로 다른 두 물체가 충돌하는 현상을 모사하여, 화강암반 모델의 고속 충돌 파괴 해석을 수행하고 결과분석 및 실험현상과 비교한다.

A bond-based peridynamic model has been reported dynamic fracture characteristic of brittle materials through a simple constitutive model. In the model, each bond is assumed to be a simple spring operating independently. As a result, this simple bond interaction modeling restricts the material behavior having a fixed Poisson's ratio of 1/4 and not being capable of expressing shear deformation. We consider a state-based peridynamics as a generalized peridynamic model. Constitutive models in the state-based peridynamics are corresponding to those in continuum theory. In state-based peridynamics, thus, the response of a material particle depends collectively on deformation of all bonds connected to other particles. So, a state-based peridynamic theory can represent the volume and shear changes of the material. In this paper, the perfect plasticity is considered to express plastic deformation of material by the state-based peridynamic constitutive model with perfect plastic flow rule. The elastic-plastic behavior of the material is verified through the stress-strain curves of the flat plate example. Furthermore, we simulate the high-speed impact on 3D granite model with a nonlocal contact modeling. It is observed that the damage patterns obtained by peridynamics are similar to experimental observations.

키워드

참고문헌

  1. Bobaru, F., Ha, Y.D., Hu, W. (2012) Damage Progression from Impact in Layered Glass Modeled with Peridynamics, Cent. Eur. J. Eng., 2(4), pp.551-561.
  2. Ha, Y.D., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, Int. J. Fract., 162(1-2), pp.229-244. https://doi.org/10.1007/s10704-010-9442-4
  3. Ha, Y.D., Bobaru, F. (2011) Characteristics of Dynamic Brittle Fracture Captured with Peridynamics, Eng. Fract. Mech., 78(6), pp.1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
  4. Ha, Y.D., Cho, S. (2011) Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.637-643.
  5. Ha, Y.D., Cho, S. (2012) Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp.279-285. https://doi.org/10.7734/COSEIK.2012.25.4.279
  6. Ha, Y.D. (2015) Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid, J. Comput. Struct. Eng. Inst. Korea, 28(3), pp.309-316. https://doi.org/10.7734/COSEIK.2015.28.3.309
  7. Hu, W., Wang, Y., Yu, J., Yen, C., Bobaru, F. (2013) Impact Damage on a Thin Glass Plate with a Thin Polycarbonate Backing, Int. J. Imp. Eng., 62, pp.152-165. https://doi.org/10.1016/j.ijimpeng.2013.07.001
  8. Madenci, E., Oterkus, S. (2016) Ordinary State-based Peridynamics for Plastic Deformation According to Von Mises Yield Criteria with Isotropic Hardening, J. Mech. & Phys. Solids, 86, pp.192-219. https://doi.org/10.1016/j.jmps.2015.09.016
  9. Mitchell, J.A. (2011) A Nonlocal, Ordinary, State-based Plasticity Model for Peridynamics, SAND2011-3166, Snadia National Laboratories, Albuquerque, 32.
  10. Silling, S.A. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. & Phys. Solids, 48, pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  11. Silling, S.A., Askari, E. (2005) A Meshfree Method Based on the Peridynamic Model of Solid Mechanics, Computers and Structures, 83(17-18), pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
  12. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E. (2007) Peridynamic States and Constitutive Modeling, J. Elasticity, 88, pp.151-184. https://doi.org/10.1007/s10659-007-9125-1