DOI QR코드

DOI QR Code

화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries

  • 김해빈 (한국산업기술대학교지식기반기술.에너지대학원) ;
  • 이평우 (한국산업기술대학교생명화학공학과) ;
  • 이동근 (한국산업기술대학교생명화학공학과) ;
  • 오지선 (한국산업기술대학교생명화학공학과) ;
  • 류지헌 (한국산업기술대학교지식기반기술.에너지대학원)
  • Kim, Hae Been (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Lee, Pyung Woo (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Lee, Dong Geun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Oh, Ji Seon (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 투고 : 2019.02.04
  • 심사 : 2019.02.15
  • 발행 : 2019.02.28

초록

두께가 $52{\mu}m$의 주석필름을 고농도의 질산을 사용한 화학적 식각과정을 거쳐서 리튬이온 이차전지용 고용량 음극인 다공성 주석후막을 제조하였다. 다공성 주석필름은 반응면적이 증가하게 되어 리튬과의 합금화 반응에 대한 과전압이 감소하였으며, 동시에 충방전 시의 부피변화에 대응할 수 있는 공간이 확보되었다. 또한, 이러한 다공성 주석후막 전극은 바인더 및 도전재의 사용이 필요하지 않기 때문에 실질적으로 더욱 큰 에너지 밀도의 구현이 가능하다. 식각용액에서의 질산농도가 증가할 수록 주석필름의 식각되는 정도가 증가하여 주석의 무게와 두께가 더욱 감소하였다. 3 M 농도 이상의 질산에서 주석필름의 식각이 효과적으로 진행되었으나, 5 M 농도에서는 식각속도가 더욱 증가하여 60초 내에 대부분의 주석이 용출되어 회수할 수 없었다. 4 M 농도의 질산용액에서 식각한 경우에는 두께는 40.3%가 감소하며 무게는 48.9%가 감소된 다공성 구조가 형성되었다. 주석필름의 식각되는 정도가 증가함에 따라 전기화학적 활성이 증가하게 되어 리튬저장에 대한 가역용량이 증가하였으며, 4 M 농도에서 식각한 주석필름의 경우에는 650 mAh/g의 가역용량을 나타내었으며, 안정적인 사이클 특성을 나타내어 주석분말을 사용하여 기존의 전극제조 방법으로 제조한 경우보다 향상된 사이클 성능을 나타내었다.

A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

키워드

JHHHB@_2019_v22n1_36_f0001.png 이미지

Fig. 1. (a) The weight loss ratio and (b) thickness change of thick Sn film after chemical etching according to the concentration of nitric acid.

JHHHB@_2019_v22n1_36_f0002.png 이미지

Fig. 3. FE-SEM images of the chemically-etched Sn foils for 60 seconds: (a) pristine, (b) 2 M HNO3, (c) 3 M HNO3, and (d) 4 M HNO3.

JHHHB@_2019_v22n1_36_f0003.png 이미지

Fig. 4. 3D-profiles from optical microscope of the chemically-etched Sn foils for 60 seconds: (a) 2 M HNO3, (b) 3 M HNO3, and (c) 4 M HNO3.

JHHHB@_2019_v22n1_36_f0004.png 이미지

Fig. 5. (a) The galvanostatic charge/discharge voltage profiles and (b) the differential discharge capacity plots at first cycle obtained from Li/Sn-film half-cells.

JHHHB@_2019_v22n1_36_f0005.png 이미지

Fig. 2. Optical microscope images of the chemicallyetched Sn foils for 60 seconds: (a) pristine, (b) 2 M HNO3, (c) 3 M HNO3, and (d) 4 M HNO3.

JHHHB@_2019_v22n1_36_f0006.png 이미지

Fig. 6. The dealloying (discharge) capacity delivered by Li/Sn-film and Li/Sn-powder half-cells.

참고문헌

  1. T.-H. Kim, J.-S. Park, S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  2. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn, 'Li-alloy based anode materials for Li secondary batteries' Chem. Soc. Rev. 39, 3115 (2010). https://doi.org/10.1039/b919877f
  3. M. Winter and J.O. Besenhard, 'Electrochemical lithiation of tin and tin-based intermetallics and composites' Electrochim. Acta, 45, 31 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  4. Z. Yi, Z. Wang, Y. Cheng, and L. Wang, 'Sn-based Intermetallic Compounds for Li-ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances' Energy Environ. Mater., 1, 132 (2018). https://doi.org/10.1002/eem2.12016
  5. G.R. Goward, N.J. Taylor, D.C.S. Souza, and L.F. Nazar, 'The true crystal structure of $Li_{17}M_4$ (M=Ge, Sn, Pb)-revised from $Li_{22}M_5$' J. Alloys Compds., 329, 82 (2001). https://doi.org/10.1016/S0925-8388(01)01567-5
  6. M.N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction' Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  7. J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh, 'Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries' Electrochem. Solid-State Lett., 7, A306 (2004). https://doi.org/10.1149/1.1792242
  8. H. Park, J.H. Um, H. Choi, W.-S. Yoon, Y.-E. Sung, and Heeman Choe, 'Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries' Appl. Surf. Sci., 399, 132 (2017). https://doi.org/10.1016/j.apsusc.2016.12.043
  9. K. Zhuo, M.-G. Jeong, and C.-H. Chung, 'Highly porous dendritic Ni-Sn anodes for lithium-ion batteries' J. Power Sources, 244, 601 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.055
  10. J. Entwistle, A. Rennie, and S. Patwardhan, 'A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond' J. Mater. Chem. A, 6, 18329 (2018). https://doi.org/10.1039/C8TA90223B
  11. H.-C. Shin and M. Liu, 'Three-Dimensional Porous Copper-Tin Alloy Electrodes for Rechargeable Lithium Batteries' Adv. Funct. Mater., 15, 582 (2005). https://doi.org/10.1002/adfm.200305165
  12. C.D. Gu, Y.J. Mai, J.P. Zhou, Y.H. You, and J.P. Tu, 'Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery' J. Power Sources, 214, 200 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.085
  13. B.M. Bang, H. Kim, and S. Park, 'Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications' J. Electrochem. Sci. Tech., 2, 157 (2011). https://doi.org/10.33961/JECST.2011.2.3.157
  14. J.-I. Lee, and S.Park, 'High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching' Nano Energy, 2, 146 (2013). https://doi.org/10.1016/j.nanoen.2012.08.009
  15. B.M. Bang, J.-I. Lee, H. Kim, J. Cho, and S. Park, 'High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching' Adv. Energy Mater., 2, 878 (2012). https://doi.org/10.1002/aenm.201100765
  16. I. Oh, 'Silicon Nanostructures Fabricated by Metal-Assisted Chemical Etching of Silicon' J. Kor. Electrochem. Soc., 16, 1 (2013). https://doi.org/10.5229/JKES.2013.16.1.1
  17. J.-I. Lee, K.T. Lee, J. Cho, J. Kim, N.-S. Choi, and S. Park, 'Chemical-Assisted Thermal Disproportionation of Porous Silicon Monoxide into Silicon-Based Multicomponent Systems' Angew. Chem. Int. Ed., 51, 2767 (2012). https://doi.org/10.1002/anie.201108915
  18. J. Mun and J.H. Ryu, 'Binder- and Carbon-free Porous Thick Tin Foil Electrode via a Spontaneous Electrochemical and Chemical Process' Bull. Korean Chem. Soc., 37, 48 (2016). https://doi.org/10.1002/bkcs.10620
  19. Y.N. Jo, D. Im, J.J. Kim, and S.M. Oh, 'Ni-P Coated Sn Powders as Anode for Lithium Secondary Batteries' J. Kor. Electrochem. Soc., 10, 88 (2007). https://doi.org/10.5229/JKES.2007.10.2.088
  20. S. Hong, H. Jo, and S.-W. Song, 'Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries' J. Electrochem. Sci. Tech., 6, 116 (2015). https://doi.org/10.33961/JECST.2015.6.4.116
  21. S. Park, J.H. Ryu, and S.M. Oh, 'Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode' J. Electrochem. Soc., 158, A498 (2011). https://doi.org/10.1149/1.3561424
  22. O.S. Fatoba, A.P.I. Popoola, and T. Fedotova, 'Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M $H_2SO_4$ Solution' J. Electrochem. Sci. Tech., 6, 65 (2015). https://doi.org/10.33961/JECST.2015.6.2.65
  23. S. Mehboob, A. Mehmood, J.-Y. Lee, H.-J. Shin, J. Hwang, S. Abbas, and H.Y. Ha, 'Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries' J. Mater. Chem. A, 5, 17388 (2017). https://doi.org/10.1039/C7TA05657E
  24. J.G. Lee, J. Kim, H. Park, J.B. Lee, J.H. Ryu, J.J. Kim, and S.M. Oh, 'A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes' J. Electrochem. Soc., 162, A1579 (2015). https://doi.org/10.1149/2.0821508jes