DOI QR코드

DOI QR Code

Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries

나트륨이차전지용 전환반응 음극 소재 기술 동향

  • 김수지 (숙명여자대학교화공생명공학부) ;
  • 김유진 (숙명여자대학교화공생명공학부) ;
  • 류원희 (숙명여자대학교화공생명공학부)
  • Received : 2019.02.08
  • Accepted : 2019.02.13
  • Published : 2019.02.28

Abstract

Development of low cost rechargeable batteries has been considered as a significant task for future large-scale energy storage units (i.e. electric vehicles, smart grids). Sodium-ion batteries (SIBs) have been recognized as a promising alternative to replace conventional lithium-ion batteries (LIBs) because of their abundancy and economic benign. Nevertheless, Na ions have larger ionic radius than that of Li ions, resulting in sluggish transport of Na ions in electrodes for cell operation. There have been efforts to seek suitable anode materials for the past years operated based on three different kinds of reaction mechanism (intercalation, alloy reaction, and conversion reaction). In this review, we introduce a class of conversion reaction anode materials for Na-ion batteries, which have been reported.

이차 전지의 개발이 전기자동차나 스마트그리드와 같은 중대형의 에너지저장장치로 응용범위가 확대됨에 따라 이차 전지의 경제성확보가 화두가 되고 있다. 나트륨이차전지는 리튬보다 훨씬 저렴한 나트륨원료를 사용하여 저가의 차세대 이차 전지로 크게 주목받고 있다. 이에 따라 이온 반경이 큰 나트륨이온의 삽입과 탈리를 원활하게 해줄 수 있는 음극 소재의 개발이 최근 몇 년간 활발히 수행되어 왔다. 나트륨이차전지용 음극은 세 가지의 반응 메커니즘 (층간 삽입반응, 금속-합금반응, 전환반응)을 기반한 소재들이 보고되었으며, 본 총설에서는 전환반응으로 구동하는 다양한 음극 소재들을 소개하며 나트륨 전지 셀 내 반응 메커니즘을 소개하고자 한다.

Keywords

JHHHB@_2019_v22n1_22_f0001.png 이미지

Fig. 3. 나트륨이온전지 음극 소재의 반응 메커니즘에 따른 분류

JHHHB@_2019_v22n1_22_f0002.png 이미지

Fig. 12. Heterostructure를 보이는 Sb2S3/MoS2 전극의 SEM이미지, HR-TEM 이미지, TEM 이미지와 원소 분포도.

JHHHB@_2019_v22n1_22_f0003.png 이미지

Fig. 1. (a) 전기 자동차와 스마트그리드를 이용한 중대형 에너지 장치의 응용 (b) 리튬 원료의 매장량 분포.

JHHHB@_2019_v22n1_22_f0004.png 이미지

Fig. 2. (a) 리튬과 나트륨 원료의 가격, 용량, 표준환원전위(SHE), 이온 반지름, 녹는점, 지각 내 매장량, 해수 내 매장량 비교12 (b) 리튬이온과 나트륨이온의 삽입과 탈리 반응 비교.

JHHHB@_2019_v22n1_22_f0005.png 이미지

Fig. 4 (a) 층간 삽입반응 (Intercalation reaction)9), (b) 합금반응 (Alloying reaction)38), (c) 전환반응 (Conversion reaction)41)의 전기화학적 반응 메커니즘

JHHHB@_2019_v22n1_22_f0006.png 이미지

Fig. 5 (a) Fe2O3 와 GNS 복합체 합성 개략도 (b) 비정질 Fe2O3 와 결정질 Fe2O3 에서의 나트륨 이동경로 및 전환반응 (c) Fe2O3@GNS 복합체의 SEM 이미지와 HAADF model에서 Fe2O3@GNS 의 원소 분포 TEM 이미지.

JHHHB@_2019_v22n1_22_f0007.png 이미지

Fig. 6. (a) Co3O4 MNSs 와 Co3O4 MNSs/3DGNs 복합체의 표면형상 및 전기화학적 셀 성능 비교, (b) 셰일(Shale) 구조를 가지는 Co3O4 의 표면형상 및 전기화학적 성능

JHHHB@_2019_v22n1_22_f0008.png 이미지

Fig. 7. (a) 다공성 CuO nanorod arrays (CNAs)의 구성도 (b) CNAs의 사이클 특성과 충방전 효율.

JHHHB@_2019_v22n1_22_f0009.png 이미지

Fig. 8. (a) 나트륨 이온과의 전환반응 개략도41) (b) TiO2 가 코팅된 다공성 구조의 덩굴 모양의 MoS2 나노섬유 전극의 구성도40) (c) TiO2 코팅된 덩굴 모양의 MoS2 나노섬유 전극의 ex-situ TEM 이미지와 벌크 MoS2, 덩굴 모양의 MoS2 나노섬유, TiO2 코팅된 덩굴 모양의 MoS2 나노섬유 전극의 사이클 특성 비교40) (d) 얇은 두께와 MoS2 결정 구조 내의 넓은 층간 간격을 가지는 박막형 MoS2 나노시트53)

JHHHB@_2019_v22n1_22_f0010.png 이미지

Fig. 9. (a) heterogeneous WSx /WO3 thorn-bush 나노섬유 합성 전략 개략도 (b) WSx /WO3 나노섬유의 충방전 곡선 (c) 100 mA g-1의 전류 밀도에서의 WSx 나노섬유와 400, 500°C에서 열처리 된 WSx 나노섬유의 사이클 성능 (d) 셀 작동 동안의 반응 메커니즘 개략도와 Na 대극 사진57)

JHHHB@_2019_v22n1_22_f0011.png 이미지

Fig. 10. (a) NaCF3SO3-DGM 내 CoS2와 CoS2-MWCNT 전극의 방전 용량 비교 (b) CoS2-MWCNT와 CoS2의 방전 과정 후 형성된 전극 구조물 개략도58)

JHHHB@_2019_v22n1_22_f0012.png 이미지

Fig. 11. (a) VS4. 구조물의 층간 간격과 top/ side view (b) 방전 후 NaS2 의 생성을 보이는 VS4/rGO 전극의 HRTEM 이미지와 충전 후 V의 생성을 통해 가역적 반응을 보이는 VS4/rGO전극의 HRTEM 이미지 (c) VS4/rGO 전극의 초기 가역 용량과 고율 특성10)

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nature Materials 16, 16-22 (2017). https://doi.org/10.1038/nmat4834
  2. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7, 19-29 (2014). https://doi.org/10.1038/nchem.2085
  3. Hwang, J.-Y., Myung, S.-T. & Sun, Y.-K. Sodium-ion batteries: present and future. Chemical Society Reviews 46, 3529-3614 (2017). https://doi.org/10.1039/C6CS00776G
  4. Li, T. et al. In Situ Grown Fe2O3 Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries. ACS Appl Mater Inter 9, 19900-19907 (2017). https://doi.org/10.1021/acsami.7b04407
  5. Hu, M. et al. Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Appl Mater Inter 6, 19449-19455 (2014). https://doi.org/10.1021/am505505m
  6. Zhang, Z. et al. Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries. Nanotechnology 29, 335401 (2018). https://doi.org/10.1088/1361-6528/aac645
  7. Jiang, Y. et al. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60-66 (2014). https://doi.org/10.1016/j.nanoen.2014.02.002
  8. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-Ion Batteries. Adv Funct Mater 23, 947-958 (2013). https://doi.org/10.1002/adfm.201200691
  9. Wen, Y. et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5 (2014).
  10. Sun, R. et al. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. Acs Appl Mater Inter 7, 20902-20908 (2015). https://doi.org/10.1021/acsami.5b06385
  11. Luo, W. et al. Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts Chem Res 49, 231-240 (2016). https://doi.org/10.1021/acs.accounts.5b00482
  12. Zhao, Q., Lu, Y. & Chen, J. Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Adv Energy Mater 7, 1601792 (2017). https://doi.org/10.1002/aenm.201601792
  13. Wang, L. et al. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater 16, 434-454 (2019). https://doi.org/10.1016/j.ensm.2018.06.027
  14. Kubota, K. & Komaba, S. Review-Practical Issues and Future Perspective for Na-Ion Batteries. Journal of The Electrochemical Society 162, A2538-A2550 (2015). https://doi.org/10.1149/2.0151514jes
  15. Yoo, H. D., Markevich, E., Salitra, G., Sharon, D. & Aurbach, D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17, 110-121 (2014). https://doi.org/10.1016/j.mattod.2014.02.014
  16. Hou, H., Qiu, X., Wei, W., Zhang, Y. & Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv Energy Mater 7, 1602898 (2017). https://doi.org/10.1002/aenm.201602898
  17. Yang, J., Zhou, X., Wu, D., Zhao, X. & Zhou, Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. Advanced Materials 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108
  18. Jian, Z. et al. Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials 29, 2314-2320 (2017). https://doi.org/10.1021/acs.chemmater.6b05474
  19. Cao, Y. et al. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters 12, 3783-3787 (2012). https://doi.org/10.1021/nl3016957
  20. Chen, C. et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6 (2015).
  21. Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. The Journal of Physical Chemistry Letters 2, 2560-2565 (2011). https://doi.org/10.1021/jz2012066
  22. Wu, L. et al. Unfolding the Mechanism of Sodium Insertion in Anatase TiO2Nanoparticles. Adv Energy Mater 5, 1401142 (2015). https://doi.org/10.1002/aenm.201401142
  23. Xu, H. et al. Boosting sodium storage properties of titanium dioxide by a multiscale design based on MOFderived strategy. Energy Storage Mater 17, 126-135 (2019). https://doi.org/10.1016/j.ensm.2018.07.023
  24. Hwang, J.-Y. et al. Carbon-Free TiO2 Microspheres as Anode Materials for Sodium Ion Batteries. Acs Energy Lett, 494-501 (2019).
  25. Wahid, M., Puthusseri, D., Gawli, Y., Sharma, N. & Ogale, S. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem 11, 506-526 (2018). https://doi.org/10.1002/cssc.201701664
  26. Irisarri, E., Ponrouch, A. & Palacin, M. R. Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries. J Electrochem Soc 162, A2476-A2482 (2015). https://doi.org/10.1149/2.0091514jes
  27. Dou, X. et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater Today (2019).
  28. Prabakar, S. J. R., Jeong, J. & Pyo, M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim Acta 161, 23-31 (2015). https://doi.org/10.1016/j.electacta.2015.02.086
  29. Balogun, M.-S., Luo, Y., Qiu, W., Liu, P. & Tong, Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162-178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091
  30. Luo, W. et al. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent. Acs Appl Mater Inter 7, 2626-2631 (2015). https://doi.org/10.1021/am507679x
  31. Wang, L. P., Yu, L., Wang, X., Srinivasan, M. & Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3, 9353-9378 (2015). https://doi.org/10.1039/C4TA06467D
  32. Chevrier, V. L. & Ceder, G. Challenges for Na-ion Negative Electrodes. J Electrochem Soc 158, A1011 (2011). https://doi.org/10.1149/1.3607983
  33. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv Energy Mater 2, 710-721 (2012). https://doi.org/10.1002/aenm.201200026
  34. Rudola, A., Saravanan, K., Mason, C. W. & Balaya, P. Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. Journal of Materials Chemistry A 1, 2653 (2013). https://doi.org/10.1039/c2ta01057g
  35. Li, Z., Ding, J. & Mitlin, D. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Accounts of Chemical Research 48, 1657-1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114
  36. Kim, Y., Ha, K.-H., Oh, S. M. & Lee, K. T. High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry - A European Journal 20, 11980-11992 (2014). https://doi.org/10.1002/chem.201402511
  37. Xiao, L. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun 48, 3321 (2012). https://doi.org/10.1039/c2cc17129e
  38. Edison, E., Sreejith, S., Lim, C. T. & Madhavi, S. Beyond intercalation based sodium-ion batteries: the role of alloying anodes, efficient sodiation mechanisms and recent progress. Sustain Energ Fuels 2, 2567-2582 (2018). https://doi.org/10.1039/C8SE00381E
  39. Chen, L. et al. Readiness Level of Sodium-Ion Battery Technology: A Materials Review. Adv Sustain Syst 2, 1700153 (2018). https://doi.org/10.1002/adsu.201700153
  40. Ryu, W.-H., Jung, J.-W., Park, K., Kim, S.-J. & Kim, I.-D. Vine-like MoS2anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 6, 10975-10981 (2014). https://doi.org/10.1039/C4NR02044H
  41. Wu, C., Dou, S.-X. & Yu, Y. The State and Challenges of Anode Materials Based on Conversion Reactions for Sodium Storage. Small 14, 1703671 (2018). https://doi.org/10.1002/smll.201703671
  42. Hasa, I., Verrelli, R. & Hassoun, J. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. Electrochim Acta 173, 613-618 (2015). https://doi.org/10.1016/j.electacta.2015.05.107
  43. Liu, X. et al. $Fe_2O_3$ -reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166, 12-16 (2015). https://doi.org/10.1016/j.electacta.2015.03.081
  44. Li, D., Zhou, J., Chen, X. & Song, H. Amorphous Fe2O3/Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery. Acs Appl Mater Inter 8, 30899-30907 (2016). https://doi.org/10.1021/acsami.6b09444
  45. Liu, Y. et al. Mesoporous Co 3 O 4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273, 878-884 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.121
  46. Rahman, M. M., Glushenkov, A. M., Ramireddy, T. & Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 50, 5057-5060 (2014). https://doi.org/10.1039/C4CC01033G
  47. Santangelo, S. et al. Electro-spun $Co_3O_4$ anode material for Na-ion rechargeable batteries. Solid State Ionics 309, 41-47 (2017). https://doi.org/10.1016/j.ssi.2017.07.002
  48. Li, H.-H. et al. Shale-like Co3O4 for high performance lithium/sodium ion batteries. Journal of Materials Chemistry A 4, 8242-8248 (2016). https://doi.org/10.1039/C6TA02417C
  49. Yuan, S. et al. Engraving Copper Foil to Give Large-Scale Binder-Free Porous CuO Arrays for a High-Performance Sodium-Ion Battery Anode. Adv Mater 26, 2273-2279 (2014). https://doi.org/10.1002/adma.201304469
  50. Klein, F., Pinedo, R., Berkes, B. B., Janek, J. & Adelhelm, P. Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS. The Journal of Physical Chemistry C 121, 8679-8691 (2017). https://doi.org/10.1021/acs.jpcc.6b11149
  51. Zhou, Q. et al. Co3S4@polyaniline nanotubes as highperformance anode materials for sodium ion batteries. J Mater Chem A 4, 5505-5516 (2016). https://doi.org/10.1039/C6TA01497F
  52. Wang, J. et al. An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries. Small 11, 473-481 (2015). https://doi.org/10.1002/smll.201401521
  53. Su, D., Dou, S. & Wang, G. Ultrathin MoS2Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance. Adv Energy Mater 5, 1401205 (2015). https://doi.org/10.1002/aenm.201401205
  54. Liu, Y. et al. WS2Nanowires as a High-Performance Anode for Sodium-Ion Batteries. Chemistry - A European Journal 21, 11878-11884 (2015). https://doi.org/10.1002/chem.201501759
  55. Choi, S. H. & Kang, Y. C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres. Nanoscale 7, 3965-3970 (2015). https://doi.org/10.1039/C4NR06880G
  56. Wang, X. et al. (002)-oriented WS2 with high crystalline with enhanced capacity as anode material for sodium ion batteries. Journal of Alloys and Compounds 696, 22-27 (2017). https://doi.org/10.1016/j.jallcom.2016.11.095
  57. Ryu, W.-H. et al. Heterogeneous WSx/WO3 Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. Acs Nano 10, 3257-3266 (2016). https://doi.org/10.1021/acsnano.5b06538
  58. Shadike, Z., Cao, M.-H., Ding, F., Sang, L. & Fu, Z.-W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem Commun 51, 10486-10489 (2015). https://doi.org/10.1039/C5CC02564H
  59. Li, X. et al. Mo 2 C/N-doped carbon nanowires as anode materials for sodium-ion batteries. Materials Letters 194, 30-33 (2017). https://doi.org/10.1016/j.matlet.2017.02.015
  60. Kim, J.-H. & Kim, D. K. Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future. Journal of the Korean Ceramic Society 55, 307-324 (2018). https://doi.org/10.4191/kcers.2018.55.4.07
  61. Zheng, Y. et al. Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. Angewandte Chemie 128, 3469-3474 (2016). https://doi.org/10.1002/ange.201510978
  62. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9, 682-686 (2014). https://doi.org/10.1038/nnano.2014.167